Accelerating Predictive Model Control Applications on Manycores

Koji Inoue Kyushu University

- Background
- Our Target
- Speculative MPC Execution w/ Input Value Prediction
- Preliminary Evaluation
- Conclusions

- Background
- Our Target
- Speculative MPC Execution w/ Input Value Prediction
- Preliminary Evaluation
- Conclusions

Real-Time Control Systems

Real-Time Control Systems

Feedback Control Systems (1/2)

- Problem
 - Can be used only for one-input one-output simple systems
- System identification methods with plant test results can be used
- Problem
 - Require huge memory space

Real-Time Model Predictive Control (MPC)

- Features
 - Involves state equations (or plant models) in the controller
 - Decide how to manipulate the actuator based on predicted future plant behavior by solving optimal control problems
 - Needs to satisfy real-time periodical operations
- Problem
 - $O(N^3)$ computational complexity

Overview of Model Predictive Control

Overview of Model Predictive Control

- Background
- Our Target
- Speculative MPC Execution w/ Input Value Prediction
- Preliminary Evaluation
- Conclusions

Trends in Real-Time Control Systems

Low <----- Complexity (#of System States) ------ High

- Background
- Our Target
- Speculative MPC Execution w/ Input Value Prediction
- Preliminary Evaluation
- Conclusions

Do Conventional Parallel Approaches Work Well?

Data-Level Parallelism →NO!

Small size data are fed sequentially!

Thread-Level Parallelism
NO!

Each step is executed sequentially!

Our Approach ~ Speculative Execution on Manycore ~

Conv. Single-Core Execution Fails!

Can NOT satisfy RT requirement

How Can We Predict Input Data for Speculative Executions?

How Can We Improve Prediction Accuracy?

How Can We Obtain More Performance?

- Background
- Our Target
- Speculative MPC Execution w/ Input Value Prediction
- Preliminary Evaluation
- Conclusions

Experimental Setup

- How many cores are required to achieve 100% accurate input-value prediction?
- Arm-typed Pendulum Swing-up Control
 - Total Simulation Time: 10[s]
 - Prediction Horizon: 0.5[s]
 - Sampling Time : 0.001[s]

Correlation of the number of cores and Speedup \sim A Case Study:Arm-typed Pendulum

Correlation of the number of cores and Speedup \sim A Case Study:Arm-typed Pendulum \sim

- Background
- Our Target
- Speculative MPC Execution w/ Input Value Prediction
- Preliminary Evaluation
- Conclusions

Conclusions

- Summary
 - Manycore acceleration for RT MPC applications
 - Speculative execution w/ input-value prediction
- Ongoing Work
 - Performance modeling to clarify the potential of proposed approach
 - Consider how to recover from negative impacts of miss-predictions
 - Detailed evaluation on a real manycore chip w/ other applications