
Octasic – Proprietary & Confidential | Use only pursuant to company instructions

1

LOW-POWER HIGH-PERFORMANCE ASYNCHRONOUS
GENERAL PURPOSE ARMv7 PROCESSOR FOR
MULTI-CORE APPLICATIONS
13th International Forum on Embedded MPSoC and Multicore

July 15-19th 2013, Otsu, Japan

Michel Laurence

michel.laurence@octasic.com

Octasic Inc, Montréal, Canada

Octasic – Proprietary & Confidential | Use only pursuant to company instructions

2

FOREWORD

• At MPSoC 2012 I presented a multi-core asynchronous
DSP architecture:

− High Computing Performance

− Very Energy/Power Efficiency

• We were wondering if the same architecture applied
to a general purpose processor (like ARM) could
deliver similar performance/power gains.

• This presentation provides a summary of the results
obtained so far.

Octasic – Proprietary & Confidential | Use only pursuant to company instructions

3

CONTENTS

Perspective

Background

Processor Architecture and Operation

Performance Analysis

Conclusion

Octasic – Proprietary & Confidential | Use only pursuant to company instructions

4

THE CHALLENGE OF MULTI-CORE “DARK SILICON”

Paper in COMMUNICATIONS OF THE ACM, Feb 2013 :

Power Challenges May End the Multicore Era*

“As the number of cores increases, power constraints may prevent powering of all
cores at their full speed, requiring a fraction of the cores to be powered off at all
times. According to our models, the fraction of these chips that is “dark” may be as
much as 50% within three process generations. The low utility of this “dark silicon”
may prevent both scaling to higher core counts and ultimately the economic viability
of continued silicon scaling.

 . . .

Without a breakthrough in process technology or microarchitecture, other directions
are needed to continue the historical rate of performance improvement.”

*By Esmaeilzadeh, Blem, St-Amand, Sankaralingam, & Burger

 Mike Muller, CTO of ARM had made similar warnings in 2010

Octasic – Proprietary & Confidential | Use only pursuant to company instructions

5

EXTENDING THE LIFE OF MULTI-CORE

• Octasic has developed an Asynchronous core micro-
architecture which increases processor (processing efficiency
by a factor of 2-3x

•This presentation explores if the application of the micro-
architecture to a general purpose processor core would entail
the same or similar benefits

Octasic – Proprietary & Confidential | Use only pursuant to company instructions

6

CONTENTS

Overview

Background
• Octasic

• Why Asynchronous

• ARM Core Project Objectives

Processor Architecture and Operation

Performance Analysis

Conclusion

Octasic – Proprietary & Confidential | Use only pursuant to company instructions

7

BACKGROUND ON OCTASIC

Founded 15 years ago. Currently ~100 employees

Headquartered in Montreal, Canada
• Subsidiary in Bangalore, India

Evolution:
 98/00 - Design ASICs for others

 2001 - Convert to fabless model

 2001- 2003: VoIP Support Products (Synchronous):
− 2001 - Voice Packetization Engine / OCT8304

− 2003 - Echo Cancellation Processor / OCT6100

 2004 – DSPs (Asynchronous) for Voice, Video, and Wireless Baseband
− 2008 - First Generation / OCT1010

− 2011 - Second Generation / OCT2224

− …2014 - Third Generation / OCT3XXX

Octasic – Proprietary & Confidential | Use only pursuant to company instructions

8

CONTENTS

Overview

Background
• Octasic

• Why Asynchronous

• ARM Core Project Objectives

Processor Architecture and Operation

Performance Analysis

Conclusion

Octasic – Proprietary & Confidential | Use only pursuant to company instructions

9

BASICS OF ASYNCHRONOUS TECHNOLOGY

With synchronous technology
• The control of the flow of information in a chip is controlled by a clock or a set of

clocks

• This is analogous to the traffic flow
control in a city with traffic lights

With asynchronous technology
• The control of the flow of information in a chip is controlled by feedback from

one circuit to the other

• This is analogous to the traffic flow control in a city via round-abouts rather than
traffic lights

Octasic – Proprietary & Confidential | Use only pursuant to company instructions

10

BASICS OF ASYNCHRONOUS TECHNOLOGY

There are advantages and disadvantages

 with both methodologies:

With synchronous methodology (traffic lights):
• the flow of traffic is centrally controlled, deterministic, hence more easily

modelled, tools are easier to implement

• but there are inefficiencies – cars can be waiting uselessly on a red light
while there is no traffic in the perpendicular direction. … and clocks
contrary to traffic lights consume a LOT OF ENERGY.

With asynchronous methodology (round-abouts)
• the flow of traffic is decentralized, thus less deterministic with tools not

as easy to develop and use

• traffic can be more efficient, each car can proceed at its optimal speed
not at a fixed forced speed, and overall save fuel

?

Octasic – Proprietary & Confidential | Use only pursuant to company instructions

11

CONTENTS

Overview

Background
• Octasic

• Why Asynchronous

• ARM Core Project Objectives

Processor Architecture and Operation

Performance Analysis

Conclusion

Octasic – Proprietary & Confidential | Use only pursuant to company instructions

12

ARM CORE PROJECT OBJECTIVES

Must be functionally identical with ARMv7
• Object code compatible

• Single thread performance parity
− May improve performance with “tuned” compiler

Must be able to use off-the-shelf IDE tools
• Debug interface compatibility

− Coresight compatibility

Must Deliver 2-3x Processing Efficiency (Energy)

• Same performance using ½ – ⅓ the power

Octasic – Proprietary & Confidential | Use only pursuant to company instructions

13

CONTENTS

Perspective

Background

Processor Architecture and Operation (simplified)

• Octasic Async Principles

• Architecture, Silicon, and ILP Implementation

• Operation & Synchronization

• Putting it all together

Performance Analysis

Conclusion

Octasic – Proprietary & Confidential | Use only pursuant to company instructions

14

OCTASIC ASYNCHRONOUS TECHNOLOGY

Octasic Asynchronous Architecture is loosely characterized as:
Single Rail Bundled Data (SRBD)

Traditionally with SRBD each forward path stage is timed by
handshake feedback from next stage for availability (ACK)

 CCC

ACK ACK ACK

REQ REQ REQ

ACK

REQ

LATCH LATCH LATCH

EN EN EN

This requires Special Silicon Cell & Specialized Timing Tools

Octasic – Proprietary & Confidential | Use only pursuant to company instructions

15

OCTASIC ASYNCHRONOUS TECHNOLOGY

CCC

ACK ACK ACK

REQ REQ REQ

ACK

REQ

LATCH LATCH LATCH

EN EN EN

“ACK”

REQ REQ REQREQ

LATCH LATCH LATCH

EN EN EN

Rate

Limit
Rate

Limit

Rate

Limit

“ACK”“ACK”

Traditional

Octasic has modified

the approach - no ACK

but a rate limiter:
• simplified circuit

• no special silicon cell

• standard design tools

EXAMPLE: OCTASIC SIMPLIFIED EXECUTION UNIT

OCTASIC SIMPLIFIED EXECUTION UNIT

• The operand state registers are asynchronously loaded

OCTASIC SIMPLIFIED EXECUTION UNIT

• The operand state registers are asynchronously loaded

• The instruction state register is asynchronously loaded

OCTASIC SIMPLIFIED EXECUTION UNIT

• The operand state registers are asynchronously loaded

• The instruction state register is asynchronously loaded

• When ready (input registers loaded & output register released) a launch pulse is generated

OCTASIC SIMPLIFIED EXECUTION UNIT

• The operand state registers are asynchronously loaded

• The instruction state register is asynchronously loaded

• When ready (input registers loaded & output register released) a launch pulse is generated

• Delay chain timing is modulated according to instruction

OCTASIC SIMPLIFIED EXECUTION UNIT

• The operand state registers are asynchronously loaded

• The instruction state register is asynchronously loaded

• When ready (input registers loaded & output register released) a launch pulse is generated

• Delay chain timing is modulated according to instruction

• Output state register is asynchronously loaded with result of instruction

Octasic – Proprietary & Confidential | Use only pursuant to company instructions

22

BENEFITS OF OCTASIC’S APPROACH

Uses only standard ASIC library elements

• No custom cell

• Ease of porting - from one silicon node to the next / from one
vendor to another

Can use standard CAD tools and concepts

• To facilitate sign-off

• To facilitate staff conversion training

Uses standard ATPG tools and principles

• Ensures manufacturability and reliability

Octasic – Proprietary & Confidential | Use only pursuant to company instructions

23

CONTENTS

Perspective

Background

Processor Architecture and Operation (simplified)

• Octasic Async Principles

• Architecture, Silicon, and ILP Implementation

• Operation & Synchronization

• Putting it all together

Performance Analysis

Conclusion

SYNC VS ASYNC PROCESSOR IMPLEMENTATION

Conversion Sync => Async:
• Each unit functionality is

 maintained

• Without pipelining the

 async version will be slower

• How can async architecture

 implements ILP to get back

 performance?
MEM load/store not show

Fetch

Decode

Reg Reads
Execute
Branch

Output Write

Store

Fetch Unit Decode Unit Sync Execution Unit Store

F0 F1 F2 D0 D1 D2 E0 E1 E2 E3 E4 E5 S0

Logic

Cloud State State

Async Execution Unit

Instruction Level Parallelism (ILP) is key to increase computing performance:

• In sync design Pipelining is used for ILP

ASYNC ILP IMPLEMENTATION (1)

ASYNC ILP IMPLEMENTATION (2)

To multiply the computing power or capacity of our processor we could use

 multiple Exec Units (EUs) operating in parallel, ... much like is done in

 multi-processor and multi-core designs!

Now how can we transparently weave together those EUs ...

 so they behave as one CPU?

ASYNC PROCESSOR ARCHITECTURE (2)
• Starting with the 8 execution units …

ASYNC PROCESSOR ARCHITECTURE (3)
• Adding a non-blocking combinatorial X-Bar switch to:

• connect the execution units data paths among themselves, and

• with external resources – register file, memory, etc.

ASYNC PROCESSOR ARCHITECTURE (4)
• Adding a CPU Register File to implement a load/store design:

ASYNC PROCESSOR ARCHITECTURE (5)
• Adding a Data Memory Load/Store unit

• to be able to load/store memory data into/from the CPU (registers)

ASYNC PROCESSOR ARCHITECTURE (6)
• Adding a Program Counter Control unit inc a branch predictor;

• Coupled with an Instruction Fetch & Decode Unit
• to be able to load instructions into the execution units

ASYNC PROCESSOR ARCHITECTURE (7)
• Adding L1 Memory accessible for:

• Data, or

• Code

A few given characteristics

of the architecture to

help increase performance

and save power:

• Loops

• Register Shadowing

Octasic – Proprietary & Confidential | Use only pursuant to company instructions

33

CONTENTS

Perspective

Background

Processor Architecture and Operation (simplified)

• Octasic Async Principles

• Architecture, Silicon, and ILP Implementation

• Operation & Synchronization

• Putting it all together

Performance Analysis

Conclusion

OPERATION AND SYNCHRONIZATION (1)

ETC.
COMMON

RESOURCES:

Regs + Mem.

EU 1

EU 2

EU 3

EU 4
EU 5

EU 6

EU N

This is an alternate simplified

processor block diagram:

• the execution units (EUs)

 are mapped in a ring

 like fashion

• the EUs have access

 to common resources:
• Register File

• Data Memory

• Code Memory

• X-Bar

• PC Control Logic

• a synchronization mechanism

 is required to arbitrate and

 avoid conflict in the access

 of the EUs to the common resources

OPERATION AND SYNCHRONIZATION (2)

The operation of a synchronous processor is generally centrally controlled.

This asynchronous processor has a fully distributed control structure:

• Control is exercised individually by each Execution Unit (EU)

• Control tokens are passed asynchronously among the EUs in a ring fashion

 to synchronize accesses to common resources and avoid conflicts

• In the simplified model discussed herein, six (6) tokens are used:

• Instruction Fetch Token

• Register Read Token

• Launch Execution Token (X-Bar, Reg Ready)

• No Mis-Prediction Token (PC & Write Commit)

• Data Memory Token (Rd or Wr)

• Register Write Token

D

G

Q
TOKEN

OUT

TOKEN

IN

READY RESOURCE_REQ

ACCESS

LOGIC

OPERATION AND SYNCHRONIZATION (3)

Asynchronous control tokens are used to control and synchronize

the overall operation of the processor.

• Control tokens are passed

 from one EU to the next in

 a ring fashion.

• When a token is owned by

 an EU it can use it to request

 services (via Req pulses)

• When a service request is sent

 and a certain time has elapsed

 and certain conditions are met,

 or when the EU does not need

 the token (resource) the token

 is passed to the next EU.

• On start up or after a flush

 (wrongly predicted branch),

 all tokens are assigned to the same EU.

PROCESSOR OPERATION – SIMPLIFIED ILP (1)
Assuming the operation of the Execution Units and resources (registers, memory, …) are somehow

synchronized, here is the flow of instructions overlap that would result in the processor;

hence realizing the Instruction Level Parallelism (ILP) mechanism to boost performance

I1: add r4,r3, r9

Time (pico-seconds)

I2: sub r7,r4,#0x01

I3: orr r4,r3,#0x01

I4: add r7,r7,r3,lsl r5

I5: ldr r9,r7,r2

I6: sub r7,r4,#0x01

I17: sub r2,r4,#0x47

M

R7

EU0

EU1

EU2

EU3

EU4

EU5

R3,R9 R4

R3

R7

R3,R5

R2

R4

EU6-EU15

Time (instruction cycles)

= Decode Instr.

= Fetch Instr.

= Load Reg.

= Execute Instr.

= Write Output Reg.

= Memory access

PROCESSOR OPERATION ILP: REAL-WORLD EXAMPLE (2)

= Decode Instr.

= Fetch Instr.

= Load Reg.

= Execute Instr.

= Write Output Reg.

= Memory access

Time (pico-seconds)

P
ro

g
ra

m

in

s
tr

u
c
ti
o
n

 F
lo

w

Note: Dependencies are

no different than in the

case of synchronous

pipelined processors.

However in the event of

a pipeline stall, no

dynamic power is

consumed.

Octasic – Proprietary & Confidential | Use only pursuant to company instructions

39

CONTENTS

Perspective

Background

Processor Architecture and Operation (simplified)

• Octasic Async Principles

• Architecture, Silicon, and ILP Implementation

• Operation & Synchronization

• Putting it all together

Performance Analysis

Conclusion

Octasic – Proprietary & Confidential | Use only pursuant to company instructions

40 40

ARM BLOCK DIAGRAM

Data
Registers

Write Port

Read Port

Token color coding:

 Launch

 Register Read

 PC Update

 Multiplication

 Instruction Memory

 Data Memory

 Register Write

 Synchronous Modules

XU14

XU1

XU0

XU15

C
ro

ss
b

ar
 M

u
x

Program
Counter

Instruction
FIFO

Flush &
Jump Dest

Data
Access
FIFO

Data
Memory

Instruction
Memory

Feedback
Engine

Branch
Prediction

T
o

 /
 F

ro
m

L
2

MU1
(shared

with XU9)

MU7
(shared

with XU7)

MU0
(shared

with XU8)

MU6
(shared

with XU6)

41

Typical ARM Execution Unit (EU) Implementation

Cntrl

Barrel

Shift

AOX

(logic)

Adder

Input

Muxs

Adder

SAT

SAT

8/16/2

4

Other

Instr

Rd

Rm

Rs

Rn

Rd

Clk

ALU

Delay control

value calculated

on the fly

based on

instruction

ARM SILICON LAYOUT (TOP)

dCache

L1 Data Memory

(32KB)

iCache

L1 Instruc. Memory

(32KB)

Data Access

Instruction Fetch

Branch Predictor

Registers

ARM Execution Core

ARM SILICON LAYOUT (EXECUTION CORE ZOOM)

X-Bar 8 UEs 8 UEs 4 Mul + Tokens 4 Mul + Tokens

CONTENTS

• Perspective

• Background

• Processor Architecture and Operation

• Performance Analysis

• Conclusion

ARM LAYOUT SIZE (28NM)

Block Area (µm2) Qty Area (µm2)

EU & Tokens 8700 16 139200

MUL 7600 8 30400

XBAR 38500 38500

Branch Predictor 12000 12000

iCache (32K) +
Instruction Fetch

190000 190000

dCache (32K) 172000 172000

Mem Man + Reg
Files

12600 12600

Total 594700

*Note: These areas are extracted from the library which is based on drawn 32nm.

 Actual 28nm silicon size is smaller.

ARM POWER BREAKDOWN (28NM)

Block Power (mW) % Dynamic

Central Mux + wires 2.402 3.85
Register module 1.654 2.34

Instruction fetch [synchronous] 4.867 25.0
ALU internals (including calculations) 4.343 6.96

Token modules 2.44 3.91
Everything else 3.332 5.34
Instruction cache [synchronous] 16.07 25.75

Data cache (25% loads) [synchronous] 14.54 23.30
Branch Prediction [synchronous] 12.75 20.43

Total Dynamic Power 62.4

Leakage 12.0

Total power 74.4

Executing Dhrystone @ 2,000 DMIPS

Typical, @25C

ARM PRELIMINARY RESULTS SUMMARY

Simple ARM Core Compatible Implementation (~A8 equivalent)

• Technology: 28nm LP STM

• Performance: 2,000 DMIPS

• Area (inc. 32KB L1 code and 32KB L1 data): ~0.6 mm2

• Power: ~75mW @ 2,000DMIPS

This is believed to be good from an area perspective and

very good from a power consumption perspective:

 ~½ the power consumption of equivalent synchronous implementation

CONTENTS

• Perspective

• Background

• Processor Architecture and Operation

• Performance Analysis

• Conclusion

Octasic – Proprietary & Confidential | Use only pursuant to company instructions

49

POWER REDUCTION SOURCES

• No balanced clock trees. Clocks are point to point and not
skew sensitive. Therefore smaller gates, more HVT gates and
shorter wires used

• No critical paths due to frequency constraints, therefore no
need to optimize with large gates and can use HVT gates

• Proximity of pipeline stages (each stage only connected to
previous or next). Therefore smaller gates, use of HVT gates
and shorter wires

• Clock edges are only generated when a resource is used. No
wasted edges (ex: no power use during pipeline stall)

• All of the above applies to: clocks, logic and data paths

• Overall results in >> 80% HVT usage

TEMPORAL CLOCK
MODULATION

CLOCKS ARE
POINT TO POINT

<<< FEWER
BALANCED CLOCK

TREES

SMALLER CLOCK
DRIVERS

VERY LOW
DYNAMIC POWER

USE OF
INSTRUCTION

LEVEL
PARALLELISM

CLOCK PRESENT
ONLY IF

RESOURSE IS
USED

OPTIMISED
INSTRUCTION

TIME

HIGHER
PERFORMANCE

MULTIPLE
INSTRUCTIONS IN

PARALLEL

<<< FEWER
CLOCK DRIVERS

SHORTER CLOCK
LINES

CLOCKS LOCAL TO
EXECUTION UNITS

MINIMAL CLOCKS
BETWEEN

EXECUTION UNITS

SMALLER GATES

LOWER LEAKAGE

LOGIC IS SMALL &
LOCAL

SHORTER WIRES

<<< FEWER
GATES

SILICON AREA
EFFICIENT

ADDITIONAL POWER EFFICIENCIES

CONCLUSION

• Processing power efficiency is becoming more and
more important nowadays .

• It will be imperative to push back “dark silicon”
phenomenon as silicon power improvements lag
performance gains.

• The application of a practical Asynchronous processor
micro-architecture can improve power efficiencies of
commercial general purpose processors by ~2x or more
and can help with this problem.

CONCLUSION

Thank you!
Michel Laurence

michel.laurence@octasic.com

