
HETEROGENEOUS SYSTEM ARCHITECTURE (HSA)

AND THE

SOFTWARE ECOSYSTEM

MANJU HEGDE, CORPORATE VP, PRODUCTS GROUP, AMD

OUTLINE

Motivation

HSA architecture v1

Software stack

Workload analysis

Software Ecosystem

2

PARADIGM SHIFTS….

?

S
in

g
le

-t
h
re

a
d

P
e
rf

o
rm

a
n
c
e

Time

we are

here

Enabled by:
 Moore’s

Law

 Voltage
Scaling

Constrained by:

Power

Complexity

Single-Core Era

M
o
d
e
rn

 A
p
p
lic

a
ti
o
n

P
e
rf

o
rm

a
n
c
e

Time (Data-parallel exploitation)

we are

here

Heterogeneous

Systems Era

Enabled by:
 Abundant data

parallelism

 Power efficient

GPUs

Temporarily

Constrained by:
Programming

models

Comm.overhead

T
h
ro

u
g
h
p
u
t

P
e
rf

o
rm

a
n
c
e

Time (# of processors)

we are

here

Enabled by:
 Moore’s Law

 SMP

architecture

Constrained by:
Power

Parallel SW

Scalability

Multi-Core Era

Assembly  C/C++  Java

…

pthreads  OpenMP / TBB … Shader  CUDA OpenCL !!!

3

WITNESS DISCRETE CPU AND DISCRETE GPU COMPUTE

CPU Memory (Coherent)

CPU

1

CPU

N
…

GPU Memory

GPU
CPU

2

PCIe

 Compute acceleration works well for large offload

 Slow data transfer between CPU and GPU

 Expert programming necessary to take advantage of the

GPU compute

4

FIRST AND SECOND GENERATION APUS

CPU Partition (Coherent)

CPU

1

CPU

N
…

GPU Partition

GPU
CPU

2

High

speed

Internal

Bus

 First integration of CPU and GPU on-chip

 Common physical memory but not to programmer

 Faster transfer of data between CPU and GPU to enable

more code to run on the GPU

5

GPUCPU

CPU Memory GPU Memory

| |

| |

|

| |

| |

|

| |

| |

|

| |

| |

|

 CPU explicitly copies data to GPU memory

 GPU completes computation

 CPU explicitly copies result back to CPU memory

COMMON PHYSICAL MEMORY BUT NOT TO PROGRAMMER

6

WHAT ARE THE PROBLEMS WE ARE TRYING TO SOLVE

 SOCs are quickly following into the same

many CPU core bottlenecks of the PC

 To move beyond this we need to look at

right processor(s) and/or execution device

for given workload at reasonable power

 While addressing the core issues of

 Easier to program

 Easier to optimize

 Easier to load balance

 High performance

 Lower power

7

COMBINE INTO UNIFIED PROGRAMMING MODEL

8

CPU

GPU

Shared Memory, Coherency, User Mode Queues

Audio

Processor

Video

Hardware

DSP
Image

Signal

Processing

Fixed

Function

Accelerator

Encode

Decode

Engines

WHO IS DOING THIS?

HSA FOUNDATION MEMBERSHIP – JUNE 2013

9

Founders

Promoters

Supporters

Contributors

Academic

Associates

http://www.apical.co.uk/
http://www.multicorewareinc.com/index.php

HSA FOUNDATION’S FOCUS

Identify design features to make accelerators first class processors

Attract mainstream programmers

Create a platform architecture for ALL accelerators

10

11

CPU

GPU

Audio

Processor

Video

Hardware

DSP

Image

Signal

Processing

Fixed

Function

Acctr

Encode

Decode

S
h
a

re
d

 M
e
m

o
ry

C
o

h
e

re
n

c
y,

 U
s
e

r

M
o
d
e
 Q

u
e
u
e
s

GPU compute C++ support

User Mode Scheduling

Fully coherent memory

between CPU & GPU

GPU uses pageable system

memory via CPU pointers

GPU graphics pre-emption

GPU compute context switch

HSA ARCHITECTURE V1

Physical Memory

GPU

HW
Coherency

Virtual Memory

C

P

U

Entire memory space:

Both CPU and GPU can access and

allocate any location in the system’s

virtual memory space

CacheCache

Coherent Memory:

Ensures CPU and

GPU

caches both see

an up-to-date view

of data Pageable memory:

The GPU can

seamlessly

access virtual memory

addresses that are not

(yet)

present in physical

memory

HSA KEY FEATURES

12

CPU / GPU Uniform Memory

| |

| |

|

| |

| |

|

WITH HSA

 CPU simply passes a pointer to GPU

 GPU completes computation

 CPU can read the result directly – no copying needed!

GPUCPU

13

14

CPU

GPU

Audio

Processor

Video

Hardware

DSP

Image

Signal

Processing

Fixed

Function

Acctr

Encode

Decode

S
h
a
re

d
 M

e
m

o
ry

C
o

h
e

re
n

c
y,

 U
s
e

r

M
o
d
e
 Q

u
e
u
e
s

GPU compute C++ support

User Mode Scheduling

Fully coherent memory

between CPU & GPU

GPU uses pageable system

memory via CPU pointers

GPU graphics pre-emption

GPU compute context switch

HSA ARCHITECTUREV1
HSA Software Stack

Task Queuing

Libraries

HSA Domain Libraries,

OpenCL ™ 2.x Runtime

HSA Kernel

Mode Driver

HSA Runtime

HSA JIT

Apps
Apps

Apps
Apps

Apps
Apps

HETEROGENEOUS COMPUTE DISPATCH

How compute dispatch operates

today in the driver model

How compute dispatch

improves under HSA

15

TODAY’S COMMAND AND DISPATCH FLOW
Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

A

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Hardware

Queue

A GPU

HARDWARE

16

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

A

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

TODAY’S COMMAND AND DISPATCH FLOW

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

C

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Hardware

Queue

A

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

B

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

GPU

HARDWARE

17

TODAY’S COMMAND AND DISPATCH FLOW

Hardware

Queue

A

C

B
A B

GPU

HARDWARE

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

A

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

C

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

B

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

18

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

A

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

C

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

B

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

TODAY’S COMMAND AND DISPATCH FLOW

Hardware

Queue

A GPU

HARDWARE

C

B
A B

19

HSA COMMAND AND DISPATCH FLOW

Application

A

Application

B

Application

C

Optional Dispatch

Buffer

GPU

HARDWARE

Hardware Queue

A

A A

Hardware Queue

B

B B

Hardware Queue

C

C C

C

C

 No APIs

 No Soft Queues

 No User Mode Drivers

 No Kernel Mode Transitions

 No Overhead!

 Application codes to the

hardware

 User mode queuing

 Hardware scheduling

 Low dispatch times

20

Application / Runtime

COMMAND AND DISPATCH CPU <-> GPU

B A F EDC G

CPU2CPU1 GPU

21

MAKING GPUS AND APUS EASIER TO

PROGRAM: TASK QUEUING RUNTIMES

 Popular pattern for task and data parallel

programming on SMP systems today

 Characterized by:

 A work queue per core

 Runtime library that divides large

loops into tasks and distributes to

queues

 A work stealing runtime that keeps

the system balanced

 HSA is designed to extend this pattern to

run on heterogeneous systems

22

TASK QUEUING RUNTIME ON CPUS

CPU Threads GPU Threads Memory

Work Stealing Runtime

CPU

Worker

Q

CPU

Worker

Q

CPU

Worker

Q

CPU

Worker

Q

X86 CPU X86 CPU X86 CPU X86 CPU

23

TASK QUEUING RUNTIME ON THE HSA PLATFORM

Memory

S
I

M
D

S
I

M
D

S
I

M
D

S
I

M
D

S
I

M
D

Work Stealing Runtime

CPU

Worker

Q

CPU

Worker

Q

CPU

Worker

Q

CPU

Worker

Q

GPU

Manager

Q

Fetch and Dispatch

X86 CPU X86 CPU X86 CPU X86 CPU

CPU Threads GPU Threads Memory

24

25

Hardware - APUs, CPUs, GPUs

Driver Stack

Domain Libraries

OpenCL™ 1.x, DX Runtimes,

User Mode Drivers

Graphics Kernel Mode Driver

Apps
Apps

Apps
Apps

Apps
Apps

HSA Software Stack

Task Queuing

Libraries

HSA Domain Libraries,

OpenCL ™ 2.x Runtime

HSA Kernel

Mode Driver

HSA Runtime

HSA JIT

Apps
Apps

Apps
Apps

Apps
Apps

User mode component Kernel mode component Components contributed by third parties

HSA INTERMEDIATE LANGUAGE - HSAIL

 HSAIL is the intermediate language for parallel compute in HSA

 Generated by a high level compiler (LLVM, gcc, Java VM, etc)

 Compiled down to GPU ISA or other parallel processor ISA by an IHV

Finalizer

 Finalizer may execute at run time, install time or build time, depending

on platform type

 HSAIL is a low level instruction set designed for parallel compute in a

shared virtual memory environment. HSAIL is SIMT in form and does

not dictate hardware microarchitecture

 HSAIL is designed for fast compile time, moving most optimizations to

HL compiler

 HSAIL is at the same level as PTX: an intermediate assembly or

Virtual Machine Target

 Represented as bit-code in in a Brig file format with support late

binding of libraries

26

HSA BRINGS A MODERN OPEN COMPILATION

FOUNDATION

 This bring about fully competitive rich complete compilation stack architecture for

the creation of a broader set of GPU Computing tools, languages and libraries.

 HSAIL supports LLVM and other compilers – GCC, Java VM

27

EDG or CLANG EDG or CLANG

NVVM IR SPIR

LLVM LLVM

PTX HSAIL

Hardware HARDWARE

Cuda OpenCL™

OPENCL™ AND HSA

 HSA is an optimized platform architecture for OpenCL™

 Not an alternative to OpenCL™

 Focused on the hardware platform more than API

 Ready to support many more languages than C/C++

 OpenCL™ on HSA will benefit from

 Avoidance of wasteful copies

 Low latency dispatch

 Improved memory model

 Pointers shared between CPU and GPU

 HSA also exposes a lower level programming interface

 Optimized libraries may choose the lower level interface

28

HSA DELIVERED VIA ROYALTY FREE STANDARDS

29

 Royalty Free IP, Specifications and API’s

 Three primary specifications are
 HSA Platform System Architecture Specification

 Focus on hardware requirements and low level system software

 HSA Programmer Reference Manual

 Definition of HSAIL Virtual ISA

 Binary format (BRIG)

 Compiler writers guide and Libraries developer guide

 HSA System Runtime Specification

AMD’S OPEN SOURCE COMMITMENT TO HSA

 We will open source our Linux execution and compilation stack

 Jump start the ecosystem

 Allow a single shared implementation where appropriate

 Enable university research in all areas

30

Component Name AMD

Specific

Rationale

HSA Bolt Library No Enable understanding and debug

HSAIL Code Generator No Enable research

LLVM Contributions No Industry and academic collaboration

HSA Assembler No Enable understanding and debug

HSA Runtime No Standardize on a single runtime

HSA Finalizer Yes Enable research and debug

HSA Kernel Driver Yes For inclusion in linux distros

WORKLOAD ANALYSIS

HAAR Face Detection
CORNERSTONE TECHNOLOGY

FOR COMPUTERVISION

LOOKING FOR FACES IN ALL THE RIGHT PLACES

Quick HD Calculations

Search square = 21 x 21

Pixels = 1920 x 1080 = 2,073,600

Search squares = 1900 x 1060 = ~2 Million

33

LOOKING FOR DIFFERENT SIZE FACES – BY

SCALING THE VIDEO FRAME

34

More HD Calculations

70% scaling in H and V

Total Pixels = 4.07 Million

Search squares = 3.8 Million

Feature l

Feature m

Feature p

Feature r

Feature q

HAAR CASCADE STAGES

Feature k

Stage N

Stage N+1

Face still
possible?Yes

No

REJECT
FRAME

35

22 CASCADE STAGES, EARLY OUT BETWEEN EACH

STAGE 22STAGE 21STAGE 2STAGE 1

NO FACE

FACE
CONFIRMED

Final HD Calculations

Search squares = 3.8 million

Average features per square = 124

Calculations per feature = 100

Calculations per frame = 47 GCalcs

Calculation Rate

30 frames/sec = 1.4TCalcs/second

60 frames/sec = 2.8TCalcs/second

…and this only gets front-facing faces

36

CASCADE DEPTH ANALYSIS

0

5

10

15

20

25

Cascade Depth

20-25

15-20

10-15

5-10

0-5

37

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9-22

T
im

e
 (

m
s

)
“Trinity” A10-4600M (6CU@497Mhz, 4 cores@2700Mhz)

GPU

CPU

PROCESSING TIME/STAGE

AMD A10 4600M APU with Radeon™ HD Graphics; CPU: 4 cores @ 2.3 MHz (turbo 3.2 GHz); GPU: AMD Radeon HD 7660G,

6 compute units, 685MHz; 4GB RAM; Windows 7 (64-bit); OpenCL™ 1.1 (873.1)

Cascade Stage

38

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 22

Im
a
g

e
s
/S

e
c

Number of Cascade Stages on GPU

“Trinity” A10-4600M (6CU@497Mhz, 4 cores@2700Mhz)

CPU

HSA

GPU

PERFORMANCE CPU-VS-GPU

AMD A10 4600M APU with Radeon™ HD Graphics; CPU: 4 cores @ 2.3 MHz (turbo 3.2 GHz); GPU: AMD Radeon HD 7660G,

6 compute units, 685MHz; 4GB RAM; Windows 7 (64-bit); OpenCL™ 1.1 (873.1)

39

HAAR SOLUTION – RUN DIFFERENT CASCADES

ON GPU AND CPU

By seamlessly sharing data between CPU and GPU,

HSA allows the right processor to handle its appropriate

workload

+2.5x

-2.5x

INCREASED

PERFORMANCE
DECREASED ENERGY

PER FRAME

40

GAMEPLAY RIGID BODY

PHYSICS

RIGID BODY PHYSICS SIMULATION

 Rigid-Body Physics Simulation is:

 a way to animate and interact with objects, widely used in games and movie
production

 used to drive game play and for visual effects (eye candy)

 Physics Simulation is used in many of today’s software:

 Middleware Physics engines such as Bullet, Havok, PhysX

 Games ranging from Angry Birds and Cut the Rope to Tomb Raider and Crysis 3

 3D authoring tools such as Autodesk Maya, Unity 3D, Houdini, Cinema 4D,
Lightwave

 Industrial applications such as Siemens NX8 Mechatronics Concept Design

 Medical applications such as surgery trainers

 Robotics simulation

 But GPU-accelerated rigid-body physics is not used in game play -
only in effects

42

RIGID BODY PHYSICS - ALGORITHM

 Find potential interacting object “pairs” using bounding shape approximations.

 Perform full overlap ting between potentially interacting pairs

 Compute exact contact information for a various shape types

 Compute constraint forces for natural motion and stable stacking

Broad-Phase

Collision

Detection

Setup

constraints

Solve

constraints

Compute

contact

points

A B0 B1 C0 C1 D1 D1 A

1 1 2 2 3 3 4 4

B D

A

1

2 3

4

Mid-Phase

Collision

Detection

Narrow-Phase

Collision

Detection

43

RIGID BODY PHYSICS - CHALLENGES & SOLUTIONS

 Game engine and Physics engine
need to interact synchronously
during simulation

 Ray-casting queries, as well as
synchronous narrow-phase,
constraint and collision callbacks
require fast CPU round-trips and
CPU modification of simulation
state mid-pipeline

 Traditional GPU solutions cannot
guarantee frame-time response

 The set of pairs can be huge and
changes from frame to frame

 E.g. Thousands to Millions for
any given frame

Implementation Challenges

 Fast CPU round-trips

– USD

 Immediate access to geometry and

modification of simulation state mid-

pipeline

– SMA, COH

 Supports as large pair list as CPU

– EMS

 GPU can resize pair list without CPU

interaction overhead

– DYN

Benefits of HSA

EMS : Entire Memory Space; PM : Pageable Memory; COH: Bidirectional Coherency

SMA: System Memory Access; DYN: Dynamic Memory Allocation;

ENQ: GPU ENQueue; USD: USer Mode Dispatch

44

RIGID BODY PHYSICS - CHALLENGES & SOLUTIONS

 Simulation is a pipeline of many
different algorithms, some of which
are more suitable for CPU while
others are more suitable for GPU

 Many CPU optimizations (eg. “early
outs”) aren’t efficient on GPUs,
requiring the use of more brute-force
but GPU-friendly algorithms

 Diversity of intersection algorithms
cause load balancing challenges

 Varying object sizes require more
complex and difficult to parallelize
broad-phase algorithms

 “sweep-and-prune” uses incremental
sorting and traversal of lists

 Narrow-phase algorithms (such as
SAT or GJK) cause thread
divergence

Implementation Challenges

 Avoidance of the data copy to/from

GPU and of the overhead of

maintaining two copies of simulation

state

– SMA, COH

 Usage of “early out” optimizations and

more efficient load balancing

– ENQ

 More efficient serial aspects of broad-

phase can run on the CPU

– SMA, COH

 Improved handling of thread

divergence

– ENQ

Benefits of HSA

EMS : Entire Memory Space; PM : Pageable Memory; COH: Bidirectional Platform Coherency

SMA: Shared Virtual Memory; DYN: Dynamic Memory Allocation; ENQ: GPU ENQueue;

USD: USer Mode Dispatch

45

GESTURE RECOGNITION

GESTURE RECOGNITION

\:

 An emerging natural way of interacting with a computer

 Compute intensive where the computational complexity depends on the number and

complexity of recognized gestures.

 Strongly benefits from availability of depth information

 Browsing (previous/next, scroll), media players (next/previous song/video/image,

pause/start), collaboration tools, such as slideshows, gaming (finger/hand as the

controller), immersive environments, virtual reality

 Today’s systems are tuned to today’s HW, lacking in robustness and usability, which can only be

achieved by use of special-purpose HW. They do not do well for

 A wide variety of useful gestures (one or two hand, multiple finger, arm or full body)

 Motion dependent gestures (e.g. finger pinch), which requires correlating

information from multiple frames

 Adaptability to variable lighting conditions

 Larger region/distance of input, enabled by processing higher resolution video

47

ALGORITHM PIPELINE

 Image processing:

 adaptive light normalization

 Edge and corner detection

 Erode/dilate/threshold filter, to produce a
feature image.

 Depth analysis (for fg/bg segmentation, if using
stereo cameras)

 Sparse approach, correlate salient points in
the feature image, and validate via local
histogram matching in the original image.

 Connected components analysis, for hand
identification (based on level sets)

 GPU can recognize local connectivity with a
parallel scan. CPU can apply transitivity of
labels (the neighbor of your neighbor is your
neighbor).

 Feature vector (local histogram) extraction

 Global: HOG on tiles; or

 Contextual: SURF/SIFT keypoints

 Find best match of histogram, with the training set
(support vector machine), optionally update the
training set.

 Update temporal model state machine

48

GESTURE RECOGNITION – CHALLENGES AND SOLUTIONS

 Transfer of raw image data from CPU

to GPU adds latency

 Feature matching and depth

reconstruction is a divergent workload,

as images are sparsely populated by

keypoints, which require extensive

processing.

 Connected component analysis on

GPU uses parallel scan, of which the

last stages of reduction are more

efficiently performed on the CPU.

 High overhead of the per-frame

updates to the GPU copy of the feature

database, for unsupervised learning

algorithms (e.g. Oja’s rule).

Implementation Challenges

 Avoidance the latency of duplicating data in

GPU memory – SMA

 Higher GPU utilization is achieved via

wavefront reshaping - ENQ

 Reduction is most optimally implemented by

using both CPU and GPU - COH, SMA

 CPU can update the database, while the

GPU is accessing it –SMA, COH

Benefits of HSA

EMS : Entire Memory Space; PM : Pageable Memory; COH: Bidirectional Platform Coherency

SMA: Shared Virtual Memory; DYN: Dynamic Memory Allocation; ENQ: GPU ENQueue;

USD: USer Mode Dispatch

49

RAY TRACING

RAY TRACING

 Photo-realistic visualization method that is widely used in movie

production and high-fidelity visual effects

 Used in many of today’s photorealistic rendering packages

 Maxwell Render (photorealistic high-end renderer)

 Nvidia’s Optix (Nvidia GPU ray tracing renderer)

 POV-Ray (popular CPU-only ray tracer)

 Luxmark (popular ray tracing benchmark)

 Rendering method that is friendly to parallelism, however not trivially

ported to parallel architectures, due to the complexity of an efficient

implementation.

 However it is not used in interactive applications due to performance

limitations

51

RAY TRACING - ALGORITHM

 Rays are being traced from the eye to the scene and intersections are tracked.

 Many subsequent child (reflected or refracted) rays are traced, until a limit is reached.

 The scene are usually complex, so we have to build an acceleration data structure to speed-up ray-object intersections.

 This is usually the most compute intensive part of the algorithm.

 Each generated ray is subsequently colored based on a shading computation, final color is accumulated for each pixel.

 Problem scales to the full frame with 100Ks of primary rays and millions of total rays

Root

Left Right

52

RAY TRACING - CHALLENGES & SOLUTIONS

 Scene database and acceleration data

structure can be huge

 Eg. A “power plant” scene (shown

left) contains 12.7M polygons, has a

size of 500MBytes, and an

acceleration data structure of

250MB-1.5GB (depending on

renderer)

 Today’s GPUs have problems fitting

them into video memory

 Acceleration data structure has to be built

and updated using the CPU and

transferred to video memory

 8ms time to transfer above data

structure (250MB) to the GPU

Implementation Challenges

 GPU Compute Units can access scene and

acceleration data structure from main memory

– SMA, PM

 Avoidance of acceleration data structure copy to

GPU memory

– SMA

Benefits of HSA

EMS : Entire Memory Space; PM : Pageable Memory; COH: Bidirectional Platform Coherency

SMA: Shared Virtual Memory; DYN: Dynamic Memory Allocation; ENQ: GPU ENQueue;

USD: USer Mode Dispatch

53

RAY TRACING - CHALLENGES & SOLUTIONS

 Dynamic Scenes are impractical with
current GPU compute implementations

 Data structure build time too long for
interactive frame rates

 Simple data structures can be built fast, but
are difficult to traverse

 Faster traversal requires complex
structures that require a long time to
compute and are difficult to transfer to the
GPU

 Ray divergence caused by child rays
hitting different object types with different
shading models (both GPUs & APUs like
regular operations) results in lower
utilization of CUs

 The amount of rays can be immense (in the
billions), and the ray intersection process is
compute intensive

 “power plant” scene at 1080p conservative
est. 2 billion rays.

Implementation Challenges

 CPU updates to scene are transparently and

immediately available (without any transfer

penalty) to the GPU

– SMA, PM

 Casting of child rays with no CPU-GPU round

trip

– ENQ

 Wavefront reshaping can improve CU

utilization

– ENQ

Benefits of HSA

EMS : Entire Memory Space; PGM : Pageable Memory; COH: Bidirectional Coherency

SMA: System Memory Access; DYN: Dynamic Memory Allocation;

ENQ: GPU ENQueue; USD: USer Mode Dispatch

54

ACCELERATING MEMCACHED
CLOUD SERVER WORKLOAD

MEMCACHED

 A Distributed Memory Object Caching System Used in Cloud Servers

 Generally used for short-term storage and caching, handling requests that would

otherwise require database or file system accesses

 Used by Facebook, YouTube, Twitter, Wikipedia, Flickr, and others

 Effectively a large distributed hash table

 Responds to store and get requests received over the network

 Conceptually:

 store(key, object)

 object = get(key)

56

0

1

2

3

4
Key Look Up Performance Execution Breakdown

Data Transfer Execution

100%

80%

60%

40%

20%

0

OFFLOADING MEMCACHED KEY LOOKUP TO THE GPU

T. H. Hetherington, T. G. Rogers, L. Hsu, M. O’Connor, and T. M. Aamodt, “Characterizing and Evaluating a Key-Value Store Application on Heterogeneous CPU-GPU Systems,”

Proceedings of the 2012 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS 2012), April 2012.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6189209

Multithreaded CPU Radeon HD 5870 “Trinity” A10-5800K Zacate E-350

57

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6189209

ACCELERATING JAVA
GOING BEYOND NATIVE LANGUAGES

GPU PROGRAMMING OPTIONS FOR JAVA™

PROGRAMMERS
 Existing Java™ GPU (OpenCL™/CUDA™) bindings require coding a ‘Kernel’

in a domain-specific language.
// JOCL/OpenCL kernel code

__kernel void squares(__global const float *in, __global float *out){

int gid = get_global_id(0);

out[gid] = in[gid] * in[gid];

}

 Along with the Java ‘host’ code to:

 Initialize the data

 Select/Initialize execution device

 Allocate or define memory buffers for args/parameters

 Compile 'Kernel' for a selected device

 Enqueue/Send arg buffers to device

 Execute the kernel

 Read results buffers back from the device

 Cleanup (remove buffers/queues/device handles)

 Use the results

import static org.jocl.CL.*;

import org.jocl.*;

public class Sample {

public static void main(String args[]) {

// Create input- and output data

int size = 10;

float inArr[] = new float[size];

float outArray[] = new float[size];

for (int i=0; i<size; i++) {

inArr[i] = i;

}

Pointer in = Pointer.to(inArr);

Pointer out = Pointer.to(outArray);

// Obtain the platform IDs and initialize the context properties

cl_platform_id platforms[] = new cl_platform_id[1];

clGetPlatformIDs(1, platforms, null);

cl_context_properties contextProperties = new cl_context_properties();

contextProperties.addProperty(CL_CONTEXT_PLATFORM, platforms[0]);

// Create an OpenCL context on a GPU device

cl_context context = clCreateContextFromType(contextProperties,

CL_DEVICE_TYPE_CPU, null, null, null);

// Obtain the cl_device_id for the first device

cl_device_id devices[] = new cl_device_id[1];

clGetContextInfo(context, CL_CONTEXT_DEVICES,

Sizeof.cl_device_id, Pointer.to(devices), null);

// Create a command-queue

cl_command_queue commandQueue =

clCreateCommandQueue(context, devices[0], 0, null);

// Allocate the memory objects for the input- and output data

cl_mem inMem = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,

Sizeof.cl_float * size, in, null);

cl_mem outMem = clCreateBuffer(context, CL_MEM_READ_WRITE,

Sizeof.cl_float * size, null, null);

// Create the program from the source code

cl_program program = clCreateProgramWithSource(context, 1, new String[]{

"__kernel void sampleKernel("+

" __global const float *in,"+

" __global float *out){"+

" int gid = get_global_id(0);"+

" out[gid] = in[gid] * in[gid];"+

"}"

}, null, null);

// Build the program

clBuildProgram(program, 0, null, null, null, null);

// Create and extract a reference to the kernel

cl_kernel kernel = clCreateKernel(program, "sampleKernel", null);

// Set the arguments for the kernel

clSetKernelArg(kernel, 0, Sizeof.cl_mem, Pointer.to(inMem));

clSetKernelArg(kernel, 1, Sizeof.cl_mem, Pointer.to(outMem));

// Execute the kernel

clEnqueueNDRangeKernel(commandQueue, kernel,

1, null, new long[]{inArray.length}, null, 0, null, null);

// Read the output data

clEnqueueReadBuffer(commandQueue, outMem, CL_TRUE, 0,

outArray.length * Sizeof.cl_float, out, 0, null, null);

// Release kernel, program, and memory objects

clReleaseMemObject(inMem);

clReleaseMemObject(outMem);

clReleaseKernel(kernel);

clReleaseProgram(program);

clReleaseCommandQueue(commandQueue);

clReleaseContext(context);

for (float f:outArray){

System.out.printf("%5.2f, ", f);

}

}

}

JAVA ENABLEMENT BY APARAPI

Developer creates
Java™ source

Source compiled to class files
(bytecode) using standard compiler

Aparapi = Runtime capable of converting Java™ bytecode to OpenCL™

For execution on any
OpenCL™ 1.1+ capable device

OR execute via a thread pool if
OpenCL™ is not available

60

WHAT IS APARAPI?

 At development time

 Aparapi offers an API for expressing data parallel workloads in Java™

 Developer uses common Java patterns and idioms

 extend Kernel base class and implements run()method

 Java source compiled to (bytecode) using standard compiler (javac)

 Classes packaged and deployed using traditional Java tool chain

 At runtime

 Aparapi offers a runtime capable of converting bytecode to OpenCL™

 For execution on GPU/APU (or any OpenCL 1.1+ capable device)

 OR execute via a thread pool if OpenCL is not available

CPU ISA GPU ISA

MyKernel.java

JVM

Application

Aparapi

GPUCPU

OpenCL™

R
u
n
ti
m

e

javac (compiler)

MyKernel.classD
e
v
e
lo

p
m

e
n
t
ti
m

e

JAVA AND APARAPI HSA ENABLEMENT ROADMAP

62

HSAIL

HSA-Enabled JVM

Application

HSA GPUHSA CPU

HSA Finalizer

CPU ISA GPU ISA

HSA Runtime

LLVM Optimizer

HSAIL

IR

JVM

Application

APARAPI

HSA GPUHSA CPU

HSA Finalizer

CPU ISA GPU ISACPU ISA GPU ISA

JVM

Application

APARAPI

GPUCPU

OpenCL™

HSAIL

JVM

Application

APARAPI

HSA GPUHSA CPU

HSA Finalizer

CPU ISA GPU ISA

Heterogeneous

Systems

GOALS FOR HSA

DEVELOPER Easier to program

ENDUSER Rich Experiences

DEVELOPER Improved performance

&power

OSV Improved quality of service

• Expressive runtime for rich high level programming models

• Unified address space with Dynamic Memory Allocation

• Single Source for all processors on the SOC

• Advanced Natural User Interfaces & Presence Capabilities

• Rich Cloud Computing User Experiences

• Perceptual Computing Problems

• Bring Hollywood Class Realism to Real-time Entertainment

• Reduced Kernel Launch Time

• Efficient CPU & GPU Communication

• Pass Pointers rather then move memory

• Support for Multiple Concurrent GPU process

• Preemptive Multitasking of CPU/GPU resources

• Support for Shared Virtual Memory with paging support

INITIAL OPEN SOURCE TARGETS
 x264

 Handbrake

 FFMPEG

 JPEG

 VLC

 OpenCV

 GIMP

 ImageMagick

 IrfanView

 Hadoop, Memcached

 Aparapi – A parallel API (for Java)

 Bolt – a Unified Heterogeneous Library

 Crypto++

 Bullet physics library

 …. + Search for “OpenCL” on Sourceforge, Github, Google Code, BitBucket finds over 2000

projects

64

http://www.google.com/imgres?imgurl=http://www.evafedoramx.org/wp-content/uploads/2012/09/Logo-Gimp.png&imgrefurl=http://www.evafedoramx.org/2011/10/22/alternativas-libres-a-herramientas-privativas/&docid=lw631MBGbbWMKM&tbnid=gWQaxmY2sehNfM&w=500&h=500&ei=2DFjUdGOIOGEyAHsoYGYDw&ved=0CAMQxiAwAQ&iact=ricl
http://www.google.com/url?sa=i&source=images&cd=&cad=rja&docid=meU9wMqivTDStM&tbnid=J1NyQ2hSHuMioM:&ved=0CAgQjRwwAA&url=http://blog.unifr.ch/micromus/archives/691/handbrake-logo&ei=SDJjUeC7OOjayAHuh4HADA&psig=AFQjCNFUfrVATOOyrTwcs14EPtvjN38zLg&ust=1365541832955359

OPENCL ON GOOGLE SCHOLAR IS GROWING RAPIDLY

Over 2000 papers in 2012

See http://developer.amd.com/Resources/library/Pages/default.aspx

for of select recent OpenCL™ papers

65

http://developer.amd.com/Resources/library/Pages/default.aspx

ACADEMIC TRACTION

 Over 100 Universities teaching multi-
faceted hc programming courses
Worldwide

 Growing textbook ecosystem

 Including AMD supported books
 OpenCL textbook (Morgan Kaufmann)

 OpenCL Programming Guide (Addison Wesley)

 Complete University Kit available
including:

 OpenCL textbooks – US, India, & China

 OpenCL presentation w/instructor & speaker notes, example
code, & sample application

 Research projects with Top-tier
Universities globally

66

If we build it will they

come???

67

CUDA BROUGHT PERFORMANCE TO PRO/RESEARCH ON

DISCRETE GPU
A

d
o

p
ti
o

n

2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |

CUDA Announced

CUDA gave developers access to unprecedented performance

Not easy to use …but enough performance-hungry developers willing to endure pain

Low Consumer space adoption … esp. due to lack of cross-platform

150K+ downloads

500+ Apps*

1.5M downloads

1200+ Apps

* <5% Consumer

20+% Professional

70+% Research

OPENCL’S CROSS-PLATFORM APPEAL ON APU/DGPU
A

d
o

p
ti
o

n

2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |

OpenCL 1.0

Announced

Abundant performance + same complexity as CUDA programming

Cross platform resonates with developers (needs per-platform
optimization)

35k+ downloads

11 Llano launch

Apps

300K+ downloads

100+ Apps

OpenCL 1.1

SDK 2.2

THE RUNAWAY SUCCESS OF JAVA

Easy to program

Truly cross platform – Write Once Run Anywhere

Lack of performance efficiency offset by platform capability

A
d

o
p

ti
o

n

1996 | 1999 | 2002 | 2005 | 2008 | 2011 |

JDK1.0

Java 7
10M+ developers

Milllions of Apps

J2SE 5.0
4.5M developers

Java SE 6
6M developers

You can get developers to

change!

(takes time and strategy)
71

SOLUTION

PROBLEM

THE HSA OPPORTUNITY

Developer

Return
(Differentiation in

performance,

reduced power,

features,

time to market)

Developer Investment
(Effort, time, new skills)

Good user
experiences

 Historically, developers program CPUs

 HSA + Libraries =
productivity & performance with low power

Wide range of
differentiated
experiences

~4M
apps

~10+M*

CPU
coders

PROBLEM

Significant
niche
value

 Hetero. systems hard to program

 Not all workloads accelerate

~200
apps

~100K
GPU

coders

Few
100Ks
HSA
apps

Few M
HSA

coders

*IDC

72

When: Nov 11 – 14, 2013

Where: San Jose, CA | McEnery Convention Center

 Over 120 Individual Presentations in 12 Different Tracks

 Keynotes from industry thought-leaders, including:

 Lisa Su, general manager, Global Business Units - AMD

 Mark Papermaster, senior vice president & chief technology officer- AMD

 Phil Rogers, corporate fellow - AMD

 Mike Muller, CTO - ARM

 Johan Andersson, Chief Architect - DICE

 Tony King-Smith, Executive Vice President, Marketing - Imagination Technologies

 Chienping Lu, Senior Director - Mediatek USA

 Nandini Ramani, Vice President of Development - Oracle Solutions

 David Helgason, Founder & CEO - Unity Technologies

For more information and registration visit http://developer.amd.com/apu

Come to: AMD Developer Summit -- APU13

The epicenter of heterogeneous compute

http://developer.amd.com/apu

Thank you

74

