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WITNESS DISCRETE CPU AND DISCRETE GPU COMPUTE

CPU Memory (Coherent) 

CPU
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GPU
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PCIe

 Compute acceleration works well for large offload

 Slow data transfer between CPU and GPU

 Expert programming necessary to take advantage of the 

GPU compute
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FIRST AND SECOND GENERATION APUS

CPU Partition (Coherent) 
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 First integration of CPU and GPU on-chip

 Common physical memory but not to programmer

 Faster transfer of data between CPU and GPU to enable 

more code to run on the GPU
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GPUCPU
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 CPU explicitly copies data to GPU memory

 GPU completes computation

 CPU explicitly copies result back to CPU memory

COMMON PHYSICAL MEMORY BUT NOT TO PROGRAMMER
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WHAT ARE THE PROBLEMS WE ARE TRYING TO SOLVE

 SOCs are quickly following into the same 

many CPU core bottlenecks of the PC

 To move beyond this we need to look at 

right processor(s) and/or execution device 

for given workload at reasonable power

 While addressing the core issues of

 Easier to program

 Easier to optimize

 Easier to load balance

 High performance

 Lower power 
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COMBINE INTO UNIFIED PROGRAMMING MODEL
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WHO IS DOING THIS? 

HSA FOUNDATION MEMBERSHIP – JUNE 2013
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Promoters

Supporters

Contributors

Academic

Associates

http://www.apical.co.uk/
http://www.multicorewareinc.com/index.php


HSA FOUNDATION’S FOCUS 

Identify design features to make accelerators  first class processors

Attract mainstream programmers

Create a platform architecture for ALL accelerators
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GPU compute context switch

HSA  ARCHITECTURE V1



Physical Memory
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Entire memory space:  

Both CPU and GPU can access and 

allocate any location in the system’s 

virtual memory space

CacheCache

Coherent Memory: 

Ensures CPU and 

GPU 

caches both see 

an up-to-date view 

of data Pageable memory:

The GPU can 
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access virtual memory
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HSA KEY FEATURES
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CPU / GPU Uniform Memory
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WITH HSA

 CPU simply passes a pointer to GPU

 GPU completes computation

 CPU can read the result directly – no copying needed!

GPUCPU
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HSA Software Stack

Task Queuing 

Libraries

HSA Domain Libraries,

OpenCL ™ 2.x Runtime

HSA Kernel 

Mode Driver

HSA Runtime

HSA JIT

Apps
Apps

Apps
Apps

Apps
Apps



HETEROGENEOUS COMPUTE DISPATCH

How compute dispatch operates 

today in the driver model

How compute dispatch 

improves under HSA
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TODAY’S COMMAND AND DISPATCH FLOW
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TODAY’S COMMAND AND DISPATCH FLOW
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HSA COMMAND AND DISPATCH FLOW

Application 

A

Application 

B

Application 

C

Optional Dispatch 

Buffer

GPU 
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Hardware Queue
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 No APIs

 No Soft Queues

 No User Mode Drivers

 No Kernel Mode Transitions

 No Overhead!

 Application codes to the 

hardware

 User mode queuing

 Hardware scheduling

 Low dispatch times
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Application / Runtime

COMMAND AND DISPATCH CPU <-> GPU

B A F EDC G

CPU2CPU1 GPU
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MAKING GPUS AND APUS EASIER TO 

PROGRAM: TASK QUEUING RUNTIMES

 Popular pattern for task and data parallel 

programming on SMP systems today

 Characterized by:

 A work queue per core

 Runtime library that divides large 

loops into tasks and distributes to 

queues

 A work stealing runtime that keeps 

the system balanced

 HSA is designed to extend this pattern to 

run on heterogeneous systems
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TASK QUEUING RUNTIME ON CPUS
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TASK QUEUING RUNTIME ON THE HSA PLATFORM
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Hardware - APUs, CPUs, GPUs

Driver Stack

Domain Libraries
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HSA INTERMEDIATE LANGUAGE - HSAIL

 HSAIL is the intermediate language for parallel compute in HSA

 Generated by a high level compiler (LLVM, gcc, Java VM, etc)

 Compiled down to GPU ISA or other parallel processor ISA by an IHV 

Finalizer

 Finalizer may execute at run time, install time or build time, depending 

on platform type

 HSAIL is a low level instruction set designed for parallel compute in a 

shared virtual memory environment. HSAIL is SIMT in form and does 

not dictate hardware microarchitecture

 HSAIL is designed for fast compile time, moving most optimizations to 

HL compiler

 HSAIL is at the same level as PTX: an intermediate assembly or 

Virtual Machine Target

 Represented as bit-code in in a Brig file format with support late 

binding of libraries
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HSA BRINGS A MODERN OPEN COMPILATION 

FOUNDATION

 This bring about fully competitive rich complete compilation stack architecture for 

the creation of  a broader set of GPU Computing tools, languages and libraries.  

 HSAIL supports LLVM and other compilers – GCC, Java VM 

27

EDG or CLANG EDG or CLANG

NVVM IR SPIR

LLVM LLVM

PTX HSAIL

Hardware HARDWARE

Cuda OpenCL™



OPENCL™ AND HSA

 HSA is an optimized platform architecture for OpenCL™

 Not an alternative to OpenCL™

 Focused on the hardware platform more than API

 Ready to support many more languages than C/C++

 OpenCL™ on HSA will benefit from

 Avoidance of wasteful copies

 Low latency dispatch

 Improved memory model

 Pointers shared between CPU and GPU

 HSA also exposes a lower level programming interface

 Optimized libraries may choose the lower level interface
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HSA DELIVERED VIA ROYALTY FREE STANDARDS  
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 Royalty Free IP, Specifications and API’s

 Three primary specifications are 
 HSA Platform System Architecture Specification

 Focus on hardware requirements and low level system software

 HSA Programmer Reference Manual 

 Definition of HSAIL Virtual ISA

 Binary format (BRIG)

 Compiler writers guide and Libraries developer guide 

 HSA System Runtime Specification 



AMD’S OPEN SOURCE COMMITMENT TO HSA

 We will open source our Linux execution and compilation stack

 Jump start the ecosystem

 Allow a single shared implementation where appropriate

 Enable university research in all areas

30

Component Name AMD 

Specific

Rationale

HSA Bolt Library No Enable understanding and debug

HSAIL Code Generator No Enable research

LLVM Contributions No Industry and academic collaboration

HSA Assembler No Enable understanding and debug

HSA Runtime No Standardize on a single runtime

HSA Finalizer Yes Enable research and debug

HSA Kernel Driver Yes For inclusion in linux distros



WORKLOAD ANALYSIS



HAAR Face Detection
CORNERSTONE TECHNOLOGY

FOR COMPUTERVISION



LOOKING FOR FACES IN ALL THE RIGHT PLACES

Quick HD Calculations

Search square = 21 x 21

Pixels = 1920 x 1080 = 2,073,600

Search squares = 1900 x 1060 = ~2 Million
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LOOKING FOR DIFFERENT SIZE FACES – BY 

SCALING THE VIDEO FRAME

34

More HD Calculations

70% scaling in H and V

Total Pixels = 4.07 Million

Search squares = 3.8 Million



Feature l

Feature m

Feature p

Feature r

Feature q

HAAR CASCADE STAGES

Feature k

Stage N

Stage N+1

Face still
possible?Yes

No

REJECT
FRAME
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22 CASCADE STAGES, EARLY OUT BETWEEN EACH

STAGE 22STAGE 21STAGE 2STAGE 1

NO FACE

FACE 
CONFIRMED

Final HD Calculations

Search squares = 3.8 million

Average features per square = 124

Calculations per feature = 100

Calculations per frame = 47 GCalcs

Calculation Rate

30 frames/sec = 1.4TCalcs/second

60 frames/sec = 2.8TCalcs/second

…and this only gets front-facing faces
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CASCADE DEPTH ANALYSIS
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HAAR SOLUTION – RUN DIFFERENT CASCADES 

ON GPU AND CPU

By seamlessly sharing data between CPU and GPU,

HSA allows the right processor to handle its appropriate 

workload 

+2.5x

-2.5x

INCREASED

PERFORMANCE
DECREASED ENERGY

PER FRAME
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GAMEPLAY RIGID BODY 

PHYSICS



RIGID BODY PHYSICS SIMULATION

 Rigid-Body Physics Simulation is:

 a way to animate and interact with objects, widely used in games and movie 
production

 used to drive game play and for visual effects (eye candy)

 Physics Simulation is used in many of today’s software:

 Middleware Physics engines such as Bullet, Havok, PhysX

 Games ranging from Angry Birds and Cut the Rope to Tomb Raider and Crysis 3

 3D authoring tools such as Autodesk Maya, Unity 3D, Houdini, Cinema 4D, 
Lightwave

 Industrial applications such as Siemens NX8 Mechatronics Concept Design

 Medical applications such as surgery trainers

 Robotics simulation

 But GPU-accelerated rigid-body physics is not used in game play -
only in effects
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RIGID BODY PHYSICS - ALGORITHM

 Find potential interacting object “pairs” using bounding shape approximations.

 Perform full overlap ting between potentially interacting pairs

 Compute exact contact information for a various shape types

 Compute constraint forces for natural motion and stable stacking

Broad-Phase 

Collision 

Detection

Setup

constraints

Solve 

constraints

Compute

contact

points

A B0 B1 C0 C1 D1 D1 A

1 1 2 2 3 3 4 4

B D

A

1

2 3

4

Mid-Phase 

Collision 

Detection

Narrow-Phase 

Collision 

Detection
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RIGID BODY PHYSICS - CHALLENGES & SOLUTIONS

 Game engine and Physics engine 
need to interact synchronously 
during simulation 

 Ray-casting queries, as well as 
synchronous narrow-phase, 
constraint and collision callbacks 
require fast CPU round-trips and 
CPU modification of simulation 
state mid-pipeline

 Traditional GPU solutions cannot 
guarantee frame-time response

 The set of pairs can be huge and 
changes from frame to frame

 E.g. Thousands to Millions for 
any given frame

Implementation Challenges

 Fast CPU round-trips

– USD

 Immediate access to geometry and 

modification of simulation state mid-

pipeline

– SMA, COH

 Supports as large pair list as CPU

– EMS

 GPU can resize pair list without CPU 

interaction overhead

– DYN

Benefits of HSA

EMS : Entire Memory Space;  PM : Pageable Memory;  COH: Bidirectional Coherency

SMA: System Memory Access;  DYN: Dynamic Memory Allocation; 

ENQ: GPU ENQueue;  USD: USer Mode Dispatch
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RIGID BODY PHYSICS - CHALLENGES & SOLUTIONS

 Simulation is a pipeline of many 
different algorithms, some of which 
are more suitable for CPU while 
others are more suitable for GPU

 Many CPU optimizations (eg. “early 
outs”) aren’t efficient on GPUs, 
requiring the use of more brute-force 
but GPU-friendly algorithms

 Diversity of intersection algorithms 
cause load balancing challenges

 Varying object sizes require more 
complex and difficult to parallelize 
broad-phase algorithms

 “sweep-and-prune” uses incremental 
sorting and traversal of lists

 Narrow-phase algorithms (such as 
SAT or GJK) cause thread 
divergence

Implementation Challenges

 Avoidance of the data copy to/from 

GPU and of the overhead of 

maintaining two copies of simulation 

state

– SMA, COH

 Usage of  “early out” optimizations and 

more efficient load balancing

– ENQ

 More efficient serial aspects of broad-

phase can run on the CPU

– SMA, COH

 Improved handling of thread 

divergence

– ENQ

Benefits of HSA

EMS : Entire Memory Space;  PM : Pageable Memory;  COH: Bidirectional Platform Coherency

SMA: Shared Virtual Memory;  DYN: Dynamic Memory Allocation;  ENQ: GPU ENQueue;

USD: USer Mode Dispatch

45



GESTURE RECOGNITION



GESTURE RECOGNITION

\:

 An emerging natural way of interacting with a computer

 Compute intensive where the computational complexity depends on the number and 

complexity of recognized gestures.

 Strongly benefits from availability of depth information

 Browsing (previous/next, scroll), media players (next/previous song/video/image, 

pause/start), collaboration tools, such as slideshows, gaming (finger/hand as the 

controller), immersive environments, virtual reality

 Today’s systems are tuned to today’s HW, lacking in robustness and usability, which can only be 

achieved by use of special-purpose HW. They do not do well for

 A wide variety of useful gestures (one or two hand, multiple finger, arm or full body)

 Motion dependent gestures (e.g. finger pinch), which requires correlating 

information from multiple frames

 Adaptability to variable lighting conditions

 Larger region/distance of input, enabled by processing higher resolution video
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ALGORITHM PIPELINE

 Image processing: 

 adaptive light normalization

 Edge and corner detection

 Erode/dilate/threshold filter, to produce a 
feature image.

 Depth analysis (for fg/bg segmentation, if using 
stereo cameras)

 Sparse approach, correlate salient points in 
the feature image, and validate via local 
histogram matching in the original image.

 Connected components analysis, for hand 
identification (based on level sets)

 GPU can recognize local connectivity with a 
parallel scan. CPU can apply transitivity of 
labels (the neighbor of your neighbor is your 
neighbor).

 Feature vector (local histogram) extraction

 Global: HOG on tiles; or

 Contextual: SURF/SIFT keypoints

 Find best match of histogram, with the training set 
(support vector machine), optionally update the 
training set.

 Update temporal model state machine
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GESTURE RECOGNITION – CHALLENGES AND SOLUTIONS

 Transfer of raw image data from CPU 

to GPU adds latency

 Feature matching and depth 

reconstruction is a divergent workload, 

as images are sparsely populated by 

keypoints, which require extensive 

processing.

 Connected component analysis on 

GPU uses parallel scan, of which the 

last stages of reduction  are more 

efficiently performed on the CPU.

 High overhead of the per-frame 

updates to the GPU copy of the feature 

database, for unsupervised learning 

algorithms (e.g. Oja’s rule).

Implementation Challenges

 Avoidance the latency of duplicating data in 

GPU memory – SMA

 Higher GPU utilization is achieved via 

wavefront reshaping - ENQ

 Reduction is most optimally implemented by 

using both CPU and GPU - COH, SMA

 CPU can update the database, while the 

GPU is accessing it –SMA, COH

Benefits of HSA

EMS : Entire Memory Space;  PM : Pageable Memory;  COH: Bidirectional Platform Coherency

SMA: Shared Virtual Memory;  DYN: Dynamic Memory Allocation;  ENQ: GPU ENQueue;

USD: USer Mode Dispatch

49



RAY TRACING



RAY TRACING

 Photo-realistic visualization method that is widely used in movie 

production and high-fidelity visual effects

 Used in many of today’s photorealistic rendering packages

 Maxwell Render (photorealistic high-end renderer)

 Nvidia’s Optix (Nvidia GPU ray tracing renderer)

 POV-Ray (popular CPU-only ray tracer)

 Luxmark (popular ray tracing benchmark)

 Rendering method that is friendly to parallelism, however not trivially 

ported to parallel architectures, due to the complexity of an efficient 

implementation.

 However it is not used in interactive applications due to performance 

limitations
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RAY TRACING - ALGORITHM

 Rays are being traced from the eye to the scene and intersections are tracked.

 Many subsequent child (reflected or refracted) rays are traced, until a limit is reached.

 The scene are usually complex, so we have to build an acceleration data structure to speed-up ray-object intersections.

 This is usually the most compute intensive part of the algorithm.

 Each generated ray is subsequently colored based on a shading computation, final color is accumulated for each pixel.

 Problem scales to the full frame with 100Ks of primary rays and millions of total rays

Root

Left Right
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RAY TRACING - CHALLENGES & SOLUTIONS

 Scene database and acceleration data 

structure can be huge

 Eg. A “power plant” scene (shown 

left) contains 12.7M polygons, has a 

size of 500MBytes, and an 

acceleration data structure of 

250MB-1.5GB (depending on 

renderer)

 Today’s GPUs have problems fitting 

them into video memory

 Acceleration data structure has to be built 

and updated using the CPU and 

transferred to video memory

 8ms time to transfer above data 

structure (250MB) to the GPU

Implementation Challenges

 GPU Compute Units can access scene and 

acceleration data structure from main memory

– SMA, PM

 Avoidance of acceleration data structure copy to 

GPU memory

– SMA

Benefits of HSA

EMS : Entire Memory Space;  PM : Pageable Memory;  COH: Bidirectional Platform Coherency

SMA: Shared Virtual Memory;  DYN: Dynamic Memory Allocation;  ENQ: GPU ENQueue;

USD: USer Mode Dispatch
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RAY TRACING - CHALLENGES & SOLUTIONS

 Dynamic Scenes are impractical with 
current GPU compute implementations

 Data structure build time too long for 
interactive frame rates

 Simple data structures can be built fast, but 
are difficult to traverse

 Faster traversal requires complex 
structures that require a long time to 
compute and are difficult to transfer to the 
GPU

 Ray divergence caused by child rays 
hitting different object types with different 
shading models (both GPUs & APUs like 
regular operations) results in lower 
utilization of CUs

 The amount of rays can be immense (in the 
billions), and the ray intersection process is 
compute intensive

 “power plant” scene at 1080p conservative 
est. 2 billion rays.

Implementation Challenges

 CPU updates to scene are transparently and 

immediately available (without any transfer 

penalty) to the GPU

– SMA, PM

 Casting of child rays with no CPU-GPU round 

trip

– ENQ

 Wavefront reshaping can improve CU 

utilization

– ENQ

Benefits of HSA

EMS : Entire Memory Space;  PGM : Pageable Memory;  COH: Bidirectional Coherency

SMA: System Memory Access;  DYN: Dynamic Memory Allocation; 

ENQ: GPU ENQueue;  USD: USer Mode Dispatch
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ACCELERATING MEMCACHED
CLOUD SERVER WORKLOAD



MEMCACHED

 A Distributed Memory Object Caching System Used in Cloud Servers 

 Generally used for short-term storage and caching, handling requests that would 

otherwise require database or file system accesses

 Used by Facebook, YouTube, Twitter, Wikipedia, Flickr, and others

 Effectively a large distributed hash table 

 Responds to store and get requests received over the network

 Conceptually:

 store(key, object) 

 object = get(key)
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OFFLOADING MEMCACHED KEY LOOKUP TO THE GPU

T. H. Hetherington, T. G. Rogers, L. Hsu, M. O’Connor, and T. M. Aamodt, “Characterizing and Evaluating a Key-Value Store Application on Heterogeneous CPU-GPU Systems,” 

Proceedings of the 2012 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS 2012), April 2012.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6189209

Multithreaded CPU Radeon HD 5870 “Trinity” A10-5800K Zacate E-350
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ACCELERATING JAVA
GOING BEYOND NATIVE LANGUAGES



GPU PROGRAMMING OPTIONS FOR JAVA™ 

PROGRAMMERS
 Existing Java™ GPU (OpenCL™/CUDA™) bindings require coding a ‘Kernel’

in a domain-specific language.
// JOCL/OpenCL kernel code

__kernel void squares(__global const float *in, __global float *out){

int gid = get_global_id(0);

out[gid] = in[gid] * in[gid];

}

 Along with the Java ‘host’ code to:

 Initialize the data

 Select/Initialize execution device

 Allocate or define memory buffers for args/parameters

 Compile 'Kernel' for a selected device

 Enqueue/Send arg buffers to device

 Execute the kernel

 Read results buffers back from the device

 Cleanup (remove buffers/queues/device handles)

 Use the results

import static org.jocl.CL.*;

import org.jocl.*;

public class Sample {

public static void main(String args[]) {

// Create input- and output data 

int size = 10;

float inArr[] = new float[size];

float outArray[] = new float[size];

for (int i=0; i<size; i++) {

inArr[i] = i;

}

Pointer in = Pointer.to(inArr);

Pointer out = Pointer.to(outArray);

// Obtain the platform IDs and initialize the context properties

cl_platform_id platforms[] = new cl_platform_id[1];

clGetPlatformIDs(1, platforms, null);

cl_context_properties contextProperties = new cl_context_properties();

contextProperties.addProperty(CL_CONTEXT_PLATFORM, platforms[0]);

// Create an OpenCL context on a GPU device

cl_context context = clCreateContextFromType(contextProperties, 

CL_DEVICE_TYPE_CPU, null, null, null);

// Obtain the cl_device_id for the first device

cl_device_id devices[] = new cl_device_id[1];

clGetContextInfo(context, CL_CONTEXT_DEVICES, 

Sizeof.cl_device_id,  Pointer.to(devices), null);

// Create a command-queue

cl_command_queue commandQueue =

clCreateCommandQueue(context, devices[0], 0, null);

// Allocate the memory objects for the input- and output data

cl_mem inMem = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,

Sizeof.cl_float * size, in, null);

cl_mem outMem = clCreateBuffer(context, CL_MEM_READ_WRITE, 

Sizeof.cl_float * size, null, null);

// Create the program from the source code

cl_program program = clCreateProgramWithSource(context, 1, new String[]{ 

"__kernel void sampleKernel("+

"  __global const float *in,"+

"  __global float *out){"+

"    int gid = get_global_id(0);"+

"    out[gid] = in[gid] * in[gid];"+

"}"

}, null, null);

// Build the program

clBuildProgram(program, 0, null, null, null, null);

// Create and extract a reference to the kernel

cl_kernel kernel = clCreateKernel(program, "sampleKernel", null);

// Set the arguments for the kernel

clSetKernelArg(kernel, 0, Sizeof.cl_mem, Pointer.to(inMem));  

clSetKernelArg(kernel, 1, Sizeof.cl_mem, Pointer.to(outMem));  

// Execute the kernel

clEnqueueNDRangeKernel(commandQueue, kernel,

1, null,  new long[]{inArray.length}, null, 0, null, null);

// Read the output data

clEnqueueReadBuffer(commandQueue, outMem, CL_TRUE, 0, 

outArray.length * Sizeof.cl_float, out, 0, null, null);

// Release kernel, program, and memory objects

clReleaseMemObject(inMem);

clReleaseMemObject(outMem);

clReleaseKernel(kernel);

clReleaseProgram(program);

clReleaseCommandQueue(commandQueue);

clReleaseContext(context);

for (float f:outArray){

System.out.printf("%5.2f, ", f);

}

}

}



JAVA ENABLEMENT BY APARAPI

Developer creates 
Java™ source

Source compiled to class files 
(bytecode) using  standard compiler 

Aparapi = Runtime capable of converting Java™ bytecode to OpenCL™

For execution on any
OpenCL™ 1.1+ capable device

OR execute via a thread pool if 
OpenCL™ is not available
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WHAT IS APARAPI?

 At development time

 Aparapi offers an API for expressing data parallel workloads in Java™

 Developer uses common Java patterns and idioms

 extend Kernel base class and implements run()method

 Java source compiled to (bytecode) using standard compiler (javac) 

 Classes packaged and deployed using traditional Java tool chain

 At runtime

 Aparapi offers a runtime capable of  converting bytecode to OpenCL™

 For execution on GPU/APU (or any OpenCL 1.1+ capable device)

 OR execute via a thread pool if OpenCL is not available

CPU ISA GPU ISA

MyKernel.java
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GPUCPU
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R
u
n
ti
m

e

javac (compiler)

MyKernel.classD
e
v
e
lo

p
m

e
n
t 
ti
m

e



JAVA AND APARAPI HSA ENABLEMENT ROADMAP
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Heterogeneous 

Systems

GOALS FOR HSA

DEVELOPER        Easier to program

ENDUSER     Rich Experiences

DEVELOPER Improved performance 

&power

OSV       Improved quality of service

• Expressive runtime for rich high level programming models

• Unified address space with Dynamic Memory Allocation 

• Single Source  for all processors on the SOC

• Advanced Natural User Interfaces & Presence Capabilities

• Rich Cloud Computing User Experiences 

• Perceptual Computing Problems

• Bring Hollywood Class Realism to Real-time Entertainment  

• Reduced Kernel Launch Time

• Efficient CPU & GPU Communication

• Pass Pointers rather then move memory

• Support for Multiple Concurrent GPU process 

• Preemptive Multitasking of CPU/GPU resources

• Support for Shared Virtual Memory with paging support



INITIAL OPEN SOURCE TARGETS
 x264

 Handbrake

 FFMPEG

 JPEG

 VLC

 OpenCV

 GIMP

 ImageMagick

 IrfanView

 Hadoop, Memcached

 Aparapi – A parallel API (for Java)

 Bolt – a Unified Heterogeneous Library

 Crypto++

 Bullet physics library

 …. + Search for “OpenCL” on Sourceforge, Github, Google Code, BitBucket finds over 2000 

projects
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OPENCL ON GOOGLE SCHOLAR IS GROWING RAPIDLY

Over 2000 papers in 2012

See http://developer.amd.com/Resources/library/Pages/default.aspx

for of select recent OpenCL™ papers
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ACADEMIC TRACTION

 Over 100 Universities teaching multi-
faceted hc programming courses 
Worldwide

 Growing textbook ecosystem

 Including AMD supported books
 OpenCL textbook (Morgan Kaufmann)

 OpenCL Programming Guide (Addison Wesley)

 Complete University Kit available 
including:

 OpenCL textbooks – US, India, & China

 OpenCL presentation w/instructor & speaker notes, example 
code, & sample application

 Research projects with Top-tier 
Universities globally
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If we build it will they 

come???
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CUDA BROUGHT PERFORMANCE TO PRO/RESEARCH ON 

DISCRETE GPU
A

d
o

p
ti
o

n

2006 |        2007        |        2008        |        2009        |        2010        |        2011        |        2012  |

CUDA Announced

CUDA gave developers access to unprecedented performance

Not easy to use …but enough performance-hungry developers willing to endure pain

Low Consumer space adoption … esp. due to lack of cross-platform

150K+ downloads

500+ Apps*

1.5M downloads

1200+ Apps

* <5% Consumer 

20+% Professional

70+% Research



OPENCL’S CROSS-PLATFORM APPEAL ON APU/DGPU
A
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n

2006 |        2007        |        2008        |        2009        |        2010        |        2011        |        2012  |

OpenCL 1.0  

Announced

Abundant performance + same complexity as CUDA programming

Cross platform resonates with developers (needs per-platform 
optimization) 

35k+ downloads

11 Llano launch 

Apps

300K+ downloads

100+ Apps

OpenCL 1.1 

SDK 2.2 



THE RUNAWAY SUCCESS OF JAVA

Easy to program

Truly cross platform – Write Once Run Anywhere

Lack of performance efficiency offset by platform capability

A
d

o
p

ti
o

n

1996        |        1999        |        2002        |        2005       |        2008        |        2011        |

JDK1.0

Java 7
10M+ developers

Milllions of Apps

J2SE 5.0
4.5M developers

Java SE 6
6M developers



You can get developers to 

change!

(takes time and strategy)
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SOLUTION

PROBLEM

THE HSA OPPORTUNITY

Developer 

Return
(Differentiation in 

performance,

reduced power,

features,

time to market)

Developer Investment
(Effort, time, new skills)

Good user
experiences

 Historically, developers program CPUs

 HSA + Libraries =
productivity & performance with low power

Wide range of
differentiated
experiences

~4M
apps

~10+M*

CPU
coders

PROBLEM

Significant 
niche
value

 Hetero. systems hard to program

 Not all workloads accelerate

~200
apps

~100K
GPU

coders

Few 
100Ks
HSA
apps

Few M
HSA

coders

*IDC
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When: Nov 11 – 14, 2013 

Where: San Jose, CA | McEnery Convention Center

 Over 120 Individual Presentations in 12 Different Tracks

 Keynotes from industry thought-leaders, including: 

 Lisa Su, general manager, Global Business Units - AMD

 Mark Papermaster, senior vice president & chief technology officer- AMD

 Phil Rogers, corporate fellow - AMD

 Mike Muller, CTO - ARM

 Johan Andersson, Chief Architect - DICE

 Tony King-Smith, Executive Vice President, Marketing - Imagination Technologies

 Chienping Lu, Senior Director - Mediatek USA

 Nandini Ramani, Vice President of Development - Oracle Solutions

 David Helgason, Founder & CEO - Unity Technologies

For more information and registration visit http://developer.amd.com/apu

Come to: AMD Developer Summit -- APU13

The epicenter of heterogeneous compute

http://developer.amd.com/apu


Thank you
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