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WITNESS DISCRETE CPU AND DISCRETE GPU COMPUTE

CPU Memory (Coherent) 
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GPU
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 Compute acceleration works well for large offload

 Slow data transfer between CPU and GPU

 Expert programming necessary to take advantage of the 

GPU compute
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FIRST AND SECOND GENERATION APUS

CPU Partition (Coherent) 

CPU
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CPU

N
…
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GPU
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speed 

Internal 

Bus

 First integration of CPU and GPU on-chip

 Common physical memory but not to programmer

 Faster transfer of data between CPU and GPU to enable 

more code to run on the GPU
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 CPU explicitly copies data to GPU memory

 GPU completes computation

 CPU explicitly copies result back to CPU memory

COMMON PHYSICAL MEMORY BUT NOT TO PROGRAMMER
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WHAT ARE THE PROBLEMS WE ARE TRYING TO SOLVE

 SOCs are quickly following into the same 

many CPU core bottlenecks of the PC

 To move beyond this we need to look at 

right processor(s) and/or execution device 

for given workload at reasonable power

 While addressing the core issues of

 Easier to program

 Easier to optimize

 Easier to load balance

 High performance

 Lower power 
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COMBINE INTO UNIFIED PROGRAMMING MODEL
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WHO IS DOING THIS? 

HSA FOUNDATION MEMBERSHIP – JUNE 2013
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Founders

Promoters

Supporters

Contributors

Academic

Associates

http://www.apical.co.uk/
http://www.multicorewareinc.com/index.php


HSA FOUNDATION’S FOCUS 

Identify design features to make accelerators  first class processors

Attract mainstream programmers

Create a platform architecture for ALL accelerators
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HSA  ARCHITECTURE V1



Physical Memory
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CPU / GPU Uniform Memory
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WITH HSA

 CPU simply passes a pointer to GPU

 GPU completes computation

 CPU can read the result directly – no copying needed!

GPUCPU
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HETEROGENEOUS COMPUTE DISPATCH

How compute dispatch operates 

today in the driver model

How compute dispatch 

improves under HSA
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TODAY’S COMMAND AND DISPATCH FLOW
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HSA COMMAND AND DISPATCH FLOW

Application 
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Application 
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 No APIs

 No Soft Queues

 No User Mode Drivers

 No Kernel Mode Transitions

 No Overhead!

 Application codes to the 

hardware

 User mode queuing

 Hardware scheduling

 Low dispatch times
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Application / Runtime

COMMAND AND DISPATCH CPU <-> GPU

B A F EDC G

CPU2CPU1 GPU
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MAKING GPUS AND APUS EASIER TO 

PROGRAM: TASK QUEUING RUNTIMES

 Popular pattern for task and data parallel 

programming on SMP systems today

 Characterized by:

 A work queue per core

 Runtime library that divides large 

loops into tasks and distributes to 

queues

 A work stealing runtime that keeps 

the system balanced

 HSA is designed to extend this pattern to 

run on heterogeneous systems
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TASK QUEUING RUNTIME ON CPUS
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TASK QUEUING RUNTIME ON THE HSA PLATFORM
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HSA INTERMEDIATE LANGUAGE - HSAIL

 HSAIL is the intermediate language for parallel compute in HSA

 Generated by a high level compiler (LLVM, gcc, Java VM, etc)

 Compiled down to GPU ISA or other parallel processor ISA by an IHV 

Finalizer

 Finalizer may execute at run time, install time or build time, depending 

on platform type

 HSAIL is a low level instruction set designed for parallel compute in a 

shared virtual memory environment. HSAIL is SIMT in form and does 

not dictate hardware microarchitecture

 HSAIL is designed for fast compile time, moving most optimizations to 

HL compiler

 HSAIL is at the same level as PTX: an intermediate assembly or 

Virtual Machine Target

 Represented as bit-code in in a Brig file format with support late 

binding of libraries
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HSA BRINGS A MODERN OPEN COMPILATION 

FOUNDATION

 This bring about fully competitive rich complete compilation stack architecture for 

the creation of  a broader set of GPU Computing tools, languages and libraries.  

 HSAIL supports LLVM and other compilers – GCC, Java VM 

27
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OPENCL™ AND HSA

 HSA is an optimized platform architecture for OpenCL™

 Not an alternative to OpenCL™

 Focused on the hardware platform more than API

 Ready to support many more languages than C/C++

 OpenCL™ on HSA will benefit from

 Avoidance of wasteful copies

 Low latency dispatch

 Improved memory model

 Pointers shared between CPU and GPU

 HSA also exposes a lower level programming interface

 Optimized libraries may choose the lower level interface
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HSA DELIVERED VIA ROYALTY FREE STANDARDS  

29

 Royalty Free IP, Specifications and API’s

 Three primary specifications are 
 HSA Platform System Architecture Specification

 Focus on hardware requirements and low level system software

 HSA Programmer Reference Manual 

 Definition of HSAIL Virtual ISA

 Binary format (BRIG)

 Compiler writers guide and Libraries developer guide 

 HSA System Runtime Specification 



AMD’S OPEN SOURCE COMMITMENT TO HSA

 We will open source our Linux execution and compilation stack

 Jump start the ecosystem

 Allow a single shared implementation where appropriate

 Enable university research in all areas

30

Component Name AMD 

Specific

Rationale

HSA Bolt Library No Enable understanding and debug

HSAIL Code Generator No Enable research

LLVM Contributions No Industry and academic collaboration

HSA Assembler No Enable understanding and debug

HSA Runtime No Standardize on a single runtime

HSA Finalizer Yes Enable research and debug

HSA Kernel Driver Yes For inclusion in linux distros



WORKLOAD ANALYSIS



HAAR Face Detection
CORNERSTONE TECHNOLOGY

FOR COMPUTERVISION



LOOKING FOR FACES IN ALL THE RIGHT PLACES

Quick HD Calculations

Search square = 21 x 21

Pixels = 1920 x 1080 = 2,073,600

Search squares = 1900 x 1060 = ~2 Million
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LOOKING FOR DIFFERENT SIZE FACES – BY 

SCALING THE VIDEO FRAME

34

More HD Calculations

70% scaling in H and V

Total Pixels = 4.07 Million

Search squares = 3.8 Million



Feature l

Feature m

Feature p

Feature r

Feature q

HAAR CASCADE STAGES

Feature k

Stage N

Stage N+1

Face still
possible?Yes

No

REJECT
FRAME
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22 CASCADE STAGES, EARLY OUT BETWEEN EACH

STAGE 22STAGE 21STAGE 2STAGE 1

NO FACE

FACE 
CONFIRMED

Final HD Calculations

Search squares = 3.8 million

Average features per square = 124

Calculations per feature = 100

Calculations per frame = 47 GCalcs

Calculation Rate

30 frames/sec = 1.4TCalcs/second

60 frames/sec = 2.8TCalcs/second

…and this only gets front-facing faces
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CASCADE DEPTH ANALYSIS
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HAAR SOLUTION – RUN DIFFERENT CASCADES 

ON GPU AND CPU

By seamlessly sharing data between CPU and GPU,

HSA allows the right processor to handle its appropriate 

workload 

+2.5x

-2.5x

INCREASED

PERFORMANCE
DECREASED ENERGY

PER FRAME
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GAMEPLAY RIGID BODY 

PHYSICS



RIGID BODY PHYSICS SIMULATION

 Rigid-Body Physics Simulation is:

 a way to animate and interact with objects, widely used in games and movie 
production

 used to drive game play and for visual effects (eye candy)

 Physics Simulation is used in many of today’s software:

 Middleware Physics engines such as Bullet, Havok, PhysX

 Games ranging from Angry Birds and Cut the Rope to Tomb Raider and Crysis 3

 3D authoring tools such as Autodesk Maya, Unity 3D, Houdini, Cinema 4D, 
Lightwave

 Industrial applications such as Siemens NX8 Mechatronics Concept Design

 Medical applications such as surgery trainers

 Robotics simulation

 But GPU-accelerated rigid-body physics is not used in game play -
only in effects
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RIGID BODY PHYSICS - ALGORITHM

 Find potential interacting object “pairs” using bounding shape approximations.

 Perform full overlap ting between potentially interacting pairs

 Compute exact contact information for a various shape types

 Compute constraint forces for natural motion and stable stacking

Broad-Phase 

Collision 

Detection

Setup

constraints

Solve 

constraints

Compute

contact

points

A B0 B1 C0 C1 D1 D1 A

1 1 2 2 3 3 4 4

B D

A

1

2 3

4

Mid-Phase 

Collision 

Detection

Narrow-Phase 

Collision 

Detection
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RIGID BODY PHYSICS - CHALLENGES & SOLUTIONS

 Game engine and Physics engine 
need to interact synchronously 
during simulation 

 Ray-casting queries, as well as 
synchronous narrow-phase, 
constraint and collision callbacks 
require fast CPU round-trips and 
CPU modification of simulation 
state mid-pipeline

 Traditional GPU solutions cannot 
guarantee frame-time response

 The set of pairs can be huge and 
changes from frame to frame

 E.g. Thousands to Millions for 
any given frame

Implementation Challenges

 Fast CPU round-trips

– USD

 Immediate access to geometry and 

modification of simulation state mid-

pipeline

– SMA, COH

 Supports as large pair list as CPU

– EMS

 GPU can resize pair list without CPU 

interaction overhead

– DYN

Benefits of HSA

EMS : Entire Memory Space;  PM : Pageable Memory;  COH: Bidirectional Coherency

SMA: System Memory Access;  DYN: Dynamic Memory Allocation; 

ENQ: GPU ENQueue;  USD: USer Mode Dispatch
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RIGID BODY PHYSICS - CHALLENGES & SOLUTIONS

 Simulation is a pipeline of many 
different algorithms, some of which 
are more suitable for CPU while 
others are more suitable for GPU

 Many CPU optimizations (eg. “early 
outs”) aren’t efficient on GPUs, 
requiring the use of more brute-force 
but GPU-friendly algorithms

 Diversity of intersection algorithms 
cause load balancing challenges

 Varying object sizes require more 
complex and difficult to parallelize 
broad-phase algorithms

 “sweep-and-prune” uses incremental 
sorting and traversal of lists

 Narrow-phase algorithms (such as 
SAT or GJK) cause thread 
divergence

Implementation Challenges

 Avoidance of the data copy to/from 

GPU and of the overhead of 

maintaining two copies of simulation 

state

– SMA, COH

 Usage of  “early out” optimizations and 

more efficient load balancing

– ENQ

 More efficient serial aspects of broad-

phase can run on the CPU

– SMA, COH

 Improved handling of thread 

divergence

– ENQ

Benefits of HSA

EMS : Entire Memory Space;  PM : Pageable Memory;  COH: Bidirectional Platform Coherency

SMA: Shared Virtual Memory;  DYN: Dynamic Memory Allocation;  ENQ: GPU ENQueue;

USD: USer Mode Dispatch
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GESTURE RECOGNITION



GESTURE RECOGNITION

\:

 An emerging natural way of interacting with a computer

 Compute intensive where the computational complexity depends on the number and 

complexity of recognized gestures.

 Strongly benefits from availability of depth information

 Browsing (previous/next, scroll), media players (next/previous song/video/image, 

pause/start), collaboration tools, such as slideshows, gaming (finger/hand as the 

controller), immersive environments, virtual reality

 Today’s systems are tuned to today’s HW, lacking in robustness and usability, which can only be 

achieved by use of special-purpose HW. They do not do well for

 A wide variety of useful gestures (one or two hand, multiple finger, arm or full body)

 Motion dependent gestures (e.g. finger pinch), which requires correlating 

information from multiple frames

 Adaptability to variable lighting conditions

 Larger region/distance of input, enabled by processing higher resolution video
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ALGORITHM PIPELINE

 Image processing: 

 adaptive light normalization

 Edge and corner detection

 Erode/dilate/threshold filter, to produce a 
feature image.

 Depth analysis (for fg/bg segmentation, if using 
stereo cameras)

 Sparse approach, correlate salient points in 
the feature image, and validate via local 
histogram matching in the original image.

 Connected components analysis, for hand 
identification (based on level sets)

 GPU can recognize local connectivity with a 
parallel scan. CPU can apply transitivity of 
labels (the neighbor of your neighbor is your 
neighbor).

 Feature vector (local histogram) extraction

 Global: HOG on tiles; or

 Contextual: SURF/SIFT keypoints

 Find best match of histogram, with the training set 
(support vector machine), optionally update the 
training set.

 Update temporal model state machine
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GESTURE RECOGNITION – CHALLENGES AND SOLUTIONS

 Transfer of raw image data from CPU 

to GPU adds latency

 Feature matching and depth 

reconstruction is a divergent workload, 

as images are sparsely populated by 

keypoints, which require extensive 

processing.

 Connected component analysis on 

GPU uses parallel scan, of which the 

last stages of reduction  are more 

efficiently performed on the CPU.

 High overhead of the per-frame 

updates to the GPU copy of the feature 

database, for unsupervised learning 

algorithms (e.g. Oja’s rule).

Implementation Challenges

 Avoidance the latency of duplicating data in 

GPU memory – SMA

 Higher GPU utilization is achieved via 

wavefront reshaping - ENQ

 Reduction is most optimally implemented by 

using both CPU and GPU - COH, SMA

 CPU can update the database, while the 

GPU is accessing it –SMA, COH

Benefits of HSA

EMS : Entire Memory Space;  PM : Pageable Memory;  COH: Bidirectional Platform Coherency

SMA: Shared Virtual Memory;  DYN: Dynamic Memory Allocation;  ENQ: GPU ENQueue;

USD: USer Mode Dispatch
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RAY TRACING



RAY TRACING

 Photo-realistic visualization method that is widely used in movie 

production and high-fidelity visual effects

 Used in many of today’s photorealistic rendering packages

 Maxwell Render (photorealistic high-end renderer)

 Nvidia’s Optix (Nvidia GPU ray tracing renderer)

 POV-Ray (popular CPU-only ray tracer)

 Luxmark (popular ray tracing benchmark)

 Rendering method that is friendly to parallelism, however not trivially 

ported to parallel architectures, due to the complexity of an efficient 

implementation.

 However it is not used in interactive applications due to performance 

limitations
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RAY TRACING - ALGORITHM

 Rays are being traced from the eye to the scene and intersections are tracked.

 Many subsequent child (reflected or refracted) rays are traced, until a limit is reached.

 The scene are usually complex, so we have to build an acceleration data structure to speed-up ray-object intersections.

 This is usually the most compute intensive part of the algorithm.

 Each generated ray is subsequently colored based on a shading computation, final color is accumulated for each pixel.

 Problem scales to the full frame with 100Ks of primary rays and millions of total rays

Root

Left Right
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RAY TRACING - CHALLENGES & SOLUTIONS

 Scene database and acceleration data 

structure can be huge

 Eg. A “power plant” scene (shown 

left) contains 12.7M polygons, has a 

size of 500MBytes, and an 

acceleration data structure of 

250MB-1.5GB (depending on 

renderer)

 Today’s GPUs have problems fitting 

them into video memory

 Acceleration data structure has to be built 

and updated using the CPU and 

transferred to video memory

 8ms time to transfer above data 

structure (250MB) to the GPU

Implementation Challenges

 GPU Compute Units can access scene and 

acceleration data structure from main memory

– SMA, PM

 Avoidance of acceleration data structure copy to 

GPU memory

– SMA

Benefits of HSA

EMS : Entire Memory Space;  PM : Pageable Memory;  COH: Bidirectional Platform Coherency

SMA: Shared Virtual Memory;  DYN: Dynamic Memory Allocation;  ENQ: GPU ENQueue;

USD: USer Mode Dispatch
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RAY TRACING - CHALLENGES & SOLUTIONS

 Dynamic Scenes are impractical with 
current GPU compute implementations

 Data structure build time too long for 
interactive frame rates

 Simple data structures can be built fast, but 
are difficult to traverse

 Faster traversal requires complex 
structures that require a long time to 
compute and are difficult to transfer to the 
GPU

 Ray divergence caused by child rays 
hitting different object types with different 
shading models (both GPUs & APUs like 
regular operations) results in lower 
utilization of CUs

 The amount of rays can be immense (in the 
billions), and the ray intersection process is 
compute intensive

 “power plant” scene at 1080p conservative 
est. 2 billion rays.

Implementation Challenges

 CPU updates to scene are transparently and 

immediately available (without any transfer 

penalty) to the GPU

– SMA, PM

 Casting of child rays with no CPU-GPU round 

trip

– ENQ

 Wavefront reshaping can improve CU 

utilization

– ENQ

Benefits of HSA

EMS : Entire Memory Space;  PGM : Pageable Memory;  COH: Bidirectional Coherency

SMA: System Memory Access;  DYN: Dynamic Memory Allocation; 

ENQ: GPU ENQueue;  USD: USer Mode Dispatch
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ACCELERATING MEMCACHED
CLOUD SERVER WORKLOAD



MEMCACHED

 A Distributed Memory Object Caching System Used in Cloud Servers 

 Generally used for short-term storage and caching, handling requests that would 

otherwise require database or file system accesses

 Used by Facebook, YouTube, Twitter, Wikipedia, Flickr, and others

 Effectively a large distributed hash table 

 Responds to store and get requests received over the network

 Conceptually:

 store(key, object) 

 object = get(key)
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T. H. Hetherington, T. G. Rogers, L. Hsu, M. O’Connor, and T. M. Aamodt, “Characterizing and Evaluating a Key-Value Store Application on Heterogeneous CPU-GPU Systems,” 
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Multithreaded CPU Radeon HD 5870 “Trinity” A10-5800K Zacate E-350
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ACCELERATING JAVA
GOING BEYOND NATIVE LANGUAGES



GPU PROGRAMMING OPTIONS FOR JAVA™ 

PROGRAMMERS
 Existing Java™ GPU (OpenCL™/CUDA™) bindings require coding a ‘Kernel’

in a domain-specific language.
// JOCL/OpenCL kernel code

__kernel void squares(__global const float *in, __global float *out){

int gid = get_global_id(0);

out[gid] = in[gid] * in[gid];

}

 Along with the Java ‘host’ code to:

 Initialize the data

 Select/Initialize execution device

 Allocate or define memory buffers for args/parameters

 Compile 'Kernel' for a selected device

 Enqueue/Send arg buffers to device

 Execute the kernel

 Read results buffers back from the device

 Cleanup (remove buffers/queues/device handles)

 Use the results

import static org.jocl.CL.*;

import org.jocl.*;

public class Sample {

public static void main(String args[]) {

// Create input- and output data 

int size = 10;

float inArr[] = new float[size];

float outArray[] = new float[size];

for (int i=0; i<size; i++) {

inArr[i] = i;

}

Pointer in = Pointer.to(inArr);

Pointer out = Pointer.to(outArray);

// Obtain the platform IDs and initialize the context properties

cl_platform_id platforms[] = new cl_platform_id[1];

clGetPlatformIDs(1, platforms, null);

cl_context_properties contextProperties = new cl_context_properties();

contextProperties.addProperty(CL_CONTEXT_PLATFORM, platforms[0]);

// Create an OpenCL context on a GPU device

cl_context context = clCreateContextFromType(contextProperties, 

CL_DEVICE_TYPE_CPU, null, null, null);

// Obtain the cl_device_id for the first device

cl_device_id devices[] = new cl_device_id[1];

clGetContextInfo(context, CL_CONTEXT_DEVICES, 

Sizeof.cl_device_id,  Pointer.to(devices), null);

// Create a command-queue

cl_command_queue commandQueue =

clCreateCommandQueue(context, devices[0], 0, null);

// Allocate the memory objects for the input- and output data

cl_mem inMem = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,

Sizeof.cl_float * size, in, null);

cl_mem outMem = clCreateBuffer(context, CL_MEM_READ_WRITE, 

Sizeof.cl_float * size, null, null);

// Create the program from the source code

cl_program program = clCreateProgramWithSource(context, 1, new String[]{ 

"__kernel void sampleKernel("+

"  __global const float *in,"+

"  __global float *out){"+

"    int gid = get_global_id(0);"+

"    out[gid] = in[gid] * in[gid];"+

"}"

}, null, null);

// Build the program

clBuildProgram(program, 0, null, null, null, null);

// Create and extract a reference to the kernel

cl_kernel kernel = clCreateKernel(program, "sampleKernel", null);

// Set the arguments for the kernel

clSetKernelArg(kernel, 0, Sizeof.cl_mem, Pointer.to(inMem));  

clSetKernelArg(kernel, 1, Sizeof.cl_mem, Pointer.to(outMem));  

// Execute the kernel

clEnqueueNDRangeKernel(commandQueue, kernel,

1, null,  new long[]{inArray.length}, null, 0, null, null);

// Read the output data

clEnqueueReadBuffer(commandQueue, outMem, CL_TRUE, 0, 

outArray.length * Sizeof.cl_float, out, 0, null, null);

// Release kernel, program, and memory objects

clReleaseMemObject(inMem);

clReleaseMemObject(outMem);

clReleaseKernel(kernel);

clReleaseProgram(program);

clReleaseCommandQueue(commandQueue);

clReleaseContext(context);

for (float f:outArray){

System.out.printf("%5.2f, ", f);

}

}

}



JAVA ENABLEMENT BY APARAPI

Developer creates 
Java™ source

Source compiled to class files 
(bytecode) using  standard compiler 

Aparapi = Runtime capable of converting Java™ bytecode to OpenCL™

For execution on any
OpenCL™ 1.1+ capable device

OR execute via a thread pool if 
OpenCL™ is not available
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WHAT IS APARAPI?

 At development time

 Aparapi offers an API for expressing data parallel workloads in Java™

 Developer uses common Java patterns and idioms

 extend Kernel base class and implements run()method

 Java source compiled to (bytecode) using standard compiler (javac) 

 Classes packaged and deployed using traditional Java tool chain

 At runtime

 Aparapi offers a runtime capable of  converting bytecode to OpenCL™

 For execution on GPU/APU (or any OpenCL 1.1+ capable device)

 OR execute via a thread pool if OpenCL is not available

CPU ISA GPU ISA

MyKernel.java

JVM

Application

Aparapi

GPUCPU

OpenCL™

R
u
n
ti
m

e

javac (compiler)

MyKernel.classD
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JAVA AND APARAPI HSA ENABLEMENT ROADMAP
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HSAIL

HSA-Enabled JVM

Application

HSA GPUHSA CPU

HSA Finalizer

CPU ISA GPU ISA

HSA Runtime

LLVM Optimizer

HSAIL

IR

JVM

Application

APARAPI

HSA GPUHSA CPU

HSA Finalizer

CPU ISA GPU ISACPU ISA GPU ISA

JVM

Application

APARAPI

GPUCPU

OpenCL™

HSAIL

JVM

Application

APARAPI

HSA GPUHSA CPU

HSA Finalizer

CPU ISA GPU ISA



Heterogeneous 

Systems

GOALS FOR HSA

DEVELOPER        Easier to program

ENDUSER     Rich Experiences

DEVELOPER Improved performance 

&power

OSV       Improved quality of service

• Expressive runtime for rich high level programming models

• Unified address space with Dynamic Memory Allocation 

• Single Source  for all processors on the SOC

• Advanced Natural User Interfaces & Presence Capabilities

• Rich Cloud Computing User Experiences 

• Perceptual Computing Problems

• Bring Hollywood Class Realism to Real-time Entertainment  

• Reduced Kernel Launch Time

• Efficient CPU & GPU Communication

• Pass Pointers rather then move memory

• Support for Multiple Concurrent GPU process 

• Preemptive Multitasking of CPU/GPU resources

• Support for Shared Virtual Memory with paging support



INITIAL OPEN SOURCE TARGETS
 x264

 Handbrake

 FFMPEG

 JPEG

 VLC

 OpenCV

 GIMP

 ImageMagick

 IrfanView

 Hadoop, Memcached

 Aparapi – A parallel API (for Java)

 Bolt – a Unified Heterogeneous Library

 Crypto++

 Bullet physics library

 …. + Search for “OpenCL” on Sourceforge, Github, Google Code, BitBucket finds over 2000 

projects
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OPENCL ON GOOGLE SCHOLAR IS GROWING RAPIDLY

Over 2000 papers in 2012

See http://developer.amd.com/Resources/library/Pages/default.aspx

for of select recent OpenCL™ papers
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ACADEMIC TRACTION

 Over 100 Universities teaching multi-
faceted hc programming courses 
Worldwide

 Growing textbook ecosystem

 Including AMD supported books
 OpenCL textbook (Morgan Kaufmann)

 OpenCL Programming Guide (Addison Wesley)

 Complete University Kit available 
including:

 OpenCL textbooks – US, India, & China

 OpenCL presentation w/instructor & speaker notes, example 
code, & sample application

 Research projects with Top-tier 
Universities globally
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If we build it will they 

come???
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CUDA BROUGHT PERFORMANCE TO PRO/RESEARCH ON 

DISCRETE GPU
A

d
o

p
ti
o

n

2006 |        2007        |        2008        |        2009        |        2010        |        2011        |        2012  |

CUDA Announced

CUDA gave developers access to unprecedented performance

Not easy to use …but enough performance-hungry developers willing to endure pain

Low Consumer space adoption … esp. due to lack of cross-platform

150K+ downloads

500+ Apps*

1.5M downloads

1200+ Apps

* <5% Consumer 

20+% Professional

70+% Research



OPENCL’S CROSS-PLATFORM APPEAL ON APU/DGPU
A

d
o

p
ti
o

n

2006 |        2007        |        2008        |        2009        |        2010        |        2011        |        2012  |

OpenCL 1.0  

Announced

Abundant performance + same complexity as CUDA programming

Cross platform resonates with developers (needs per-platform 
optimization) 

35k+ downloads

11 Llano launch 

Apps

300K+ downloads

100+ Apps

OpenCL 1.1 

SDK 2.2 



THE RUNAWAY SUCCESS OF JAVA

Easy to program

Truly cross platform – Write Once Run Anywhere

Lack of performance efficiency offset by platform capability

A
d

o
p

ti
o

n

1996        |        1999        |        2002        |        2005       |        2008        |        2011        |

JDK1.0

Java 7
10M+ developers

Milllions of Apps

J2SE 5.0
4.5M developers

Java SE 6
6M developers



You can get developers to 

change!

(takes time and strategy)
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SOLUTION

PROBLEM

THE HSA OPPORTUNITY

Developer 

Return
(Differentiation in 

performance,

reduced power,

features,

time to market)

Developer Investment
(Effort, time, new skills)

Good user
experiences

 Historically, developers program CPUs

 HSA + Libraries =
productivity & performance with low power

Wide range of
differentiated
experiences

~4M
apps

~10+M*

CPU
coders

PROBLEM

Significant 
niche
value

 Hetero. systems hard to program

 Not all workloads accelerate

~200
apps

~100K
GPU

coders

Few 
100Ks
HSA
apps

Few M
HSA

coders

*IDC
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When: Nov 11 – 14, 2013 

Where: San Jose, CA | McEnery Convention Center

 Over 120 Individual Presentations in 12 Different Tracks

 Keynotes from industry thought-leaders, including: 

 Lisa Su, general manager, Global Business Units - AMD

 Mark Papermaster, senior vice president & chief technology officer- AMD

 Phil Rogers, corporate fellow - AMD

 Mike Muller, CTO - ARM

 Johan Andersson, Chief Architect - DICE

 Tony King-Smith, Executive Vice President, Marketing - Imagination Technologies

 Chienping Lu, Senior Director - Mediatek USA

 Nandini Ramani, Vice President of Development - Oracle Solutions

 David Helgason, Founder & CEO - Unity Technologies

For more information and registration visit http://developer.amd.com/apu

Come to: AMD Developer Summit -- APU13

The epicenter of heterogeneous compute

http://developer.amd.com/apu


Thank you
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