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Application Context
Wide Operating Range

� Today’s wireless internet applications:

� Multimedia, gaming, GPS…

� High speed > 1.5GHz

� Large range voltage operation

� Low standby power

� Challenges :

� Ultra Wide Voltage Range (UWVR) : Versatility

� Very high speed at nominal and low supply voltages

� Low energy
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DSP architecture
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Chip Micrograph

Technology

STMicro

UTBB FDSOI 

28 nm

Transistors Flip-Well (LVT) 

L=24nm

Core area 1 mm²

DSP 

benchmark

FFT 1024

VDD range 0.397V-1.3V

VBB range 0V/±2V



© CEA. All rights reserved

Outline
Achieving Performance in UWVR

� UTBB FDSOI 28 nm technology

� Well-type methodology

� Body Biasing techniques

� Optimized library sub-set 

� Assymetric standard cells

� High performance flip-flops

� FMAX tracking techniques

� Replica path and Timing fault detection

� DSP performances silicon results
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VT flavor choice - Well type
� UTBB FDSOI Low-VT transistors chosen for maximum 

speed at low voltage : Flip Well FDSOI

� DSP core VDDMIN ↘ 397mV 

� Clock frequency ↗ +400%@500mV and 

+100%@1.3V
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Power distribution – Body Biasing

� Including all 

biasing 

voltages

� Thin VBB 

power stripes

� Body-Biasing

� Supplied 

through 

specific IOs  

(± 2V) 
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� Use of available standard cells optimized for low 

voltage: 

� Extend the subset to the Wide Voltage Range

� Gate length modulation done through Poly Biasing 

� SPICE simulations and silicon measurements of qFO4 

ring oscillators 

� Keep the power-delay optimal cells in UWVR

� Cells are characterized over

[0.275V-1.4V] VDD range and [0V- (±2V)] VBB range

Optimized library sub-set
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Optimized Pulsed-latch FF

� Transmission-Gate Pulsed Latches

� A latch and a pulse generator

� Same behavior as a conventional Master-Slave FF

� Proved to be the most energy-efficient in a large portion of 

the design spacee

D-to-Q
(ps)

Egy/cycle
(fJ)

Area
(µm²)

ST C2MOS 117.5 6 4,41

ST SA 46.5 (- 60 %) 12.5 (+ 208 %) 6,85 (+ 55 %)

TGPLMuxScan 30.5 (- 74 %) 7.2 (+ 20 %) 4,73 (+ 7 %)

TGPLMuxClk 26 (- 78 %) 9.1 (+ 56 %) 5,06 (+ 14 %)
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Timing margins reduction in UWVR

FMAX tracking
� Design in typical corner case instead of worst case 

approach

� Need to compensate for PVT variations in UWVR

� Reduce energy per operation … or increase clock 

frequency

� Track the optimal Frequency/Voltage/Biasing point 

� Real maximum frequency is not available

� Functional in the UWVR / Low area and power overhead

� Two complementary solutions proposed on-chip

� Replica path based  �CODA (ClOning DAta paths)

� Timing slack sensor based � TMFLT (TiMing FauLT)
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FMAX tracking : CODA 

� 16 pairs of clones of Representative Critical Paths 

(RCP)

� One RCP is used as a canary path (delay monitor) 

� Another RCP used as a loop (oscillation frequency monitor)
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FMAX tracking : CODA 

� 16 pairs of clones of Representative Critical Paths 

(RCP)

� One RCP is used as a canary path (delay monitor) 

� Another RCP used as a loop (oscillation frequency monitor)
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• Correlation between FMAX and frequency predictions

– 5 slots into 21 dies @ 1V & 25°C (+4/-3% accuracy)

– 1 slot into 21 dies @ [0.8V-1.3V] & 25°C (6% accuracy)

– Not intrusive / Need complementary solution in UWVR

Fmax tracking : CODA
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FMAX tracking in UWVR : TMFLT 

slack time

128 TMFLT-Sensors 1 TMFLT-Ring

• Analyze the registers slack time

• 300ps detection window

• Programmable replica path

• Time-to-digital measurement 
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FMAX tracking in UWVR : TMFLT 
128 TMFLT-Sensors 1 TMFLT-Ring

• Instrumented data path are not

necessarily critical

�Only activated at calibration

• Programmed with user IR 

drop margins

� Calibrated and then activated 

at runtime

Critical path

Instrumented paths

Clock period

slack time

Path 0
Path 1
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TMFLT results
• Frequency estimation 

error compared to FMAX

– Error of ±4% at 1V

• Compared to worst case 

PVT corner (3σ) approach 

without FMAX tracking:

– Energy gain of 40.6% @ 0.6V

– Frequency gain of 24% @1V
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DSP speed performance measurements

460MHz@397mV

• FBB up to +2V and FMAX tracking :
– ↗ frequency up to 460MHz at minimum voltage
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DSP energy performance measurements
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• For a fixed voltage supply :
– Lowest energy at 460MHz

– Power consumption : 370mW at 1V
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DSP energy performance measurements

results
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• FBB and FMAX tracking : 
– ↗ Frequency up to 59% (target 100pJ/cycle) 

– ↘ Energy by 20% (target 1.7 GHz)
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Conclusion
� Very high speed and low energy 28 nm DSP achieved

by the efficient use of FMAX tracking techniques  

combined with optimized libraries in UTBB FDSOI 

technology

� Convergence between High Performance and Low

Power is possible by using innovative Ultra Wide 

Voltage Range design techniques

� New features for increased Versatility in future 

integrated circuits


