

MPSoC 2014

Efficiency, Flexibility and Ease of Programming

A comparison of two opposite architectural approaches

Gerd Ascheid, Xiaolin Chen, Daniel Günther

Institute for Communication Technologies and Embedded Systems

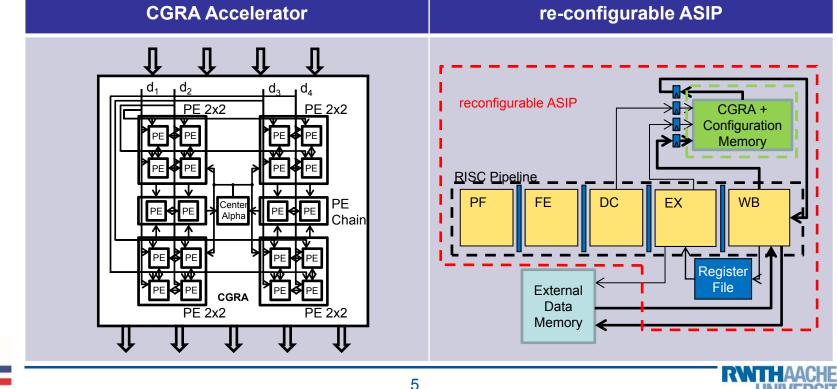
- The two compared architectural approaches
- Efficiency, flexibility, and programmability
- Summary

Motivation

- Flexible accelerator for high data rate wireless baseband processing
 - Coarse grained reconfigurable array
 - In particular supporting matrix-vector ops (inversion!)
 - Basic processing elements are e.g. (complex) multipliers, square root, ...
 - Fixed point arithmetic for efficiency
 - How close can you get to dedicated ASIC performance?
- Challenge: How does the CGRA performance compare to an optimized processor?
 - "Standard" features, e.g. SIMD plus
 - Conversion of float to fixed not trivial (numerical stability e.g. of matrix inversion)
 -> Optimized floating point performance

Lightweight SDR ASIP

Make the simplest architecture that can do the job as efficient as possible


- Focus on programmability, flexibility and usability
- Slim, efficient core Duplicate for high throughput

Arithmetic	Structure	Data Path Routing		
 Floating-point arithmetic for programmability and numerical stability Energy tuning by bit- granular operand masking 	 SIMD for vector arithmetic Pipelined ALU (4-stage) due to floating-point HW complexity Vector register file 	 Access schemes to support wide range of operations Permutation units for vector arithmetic 		
$\begin{array}{c} 0.8 \\ 0.7 \\ 0.6 \\ 0.5 \\ 0.4 \\ 0.3 \\ 0.4 \\$	partitioned for element-wise access (flexibility & energy optimization)	 Intelligent bypassing for multiple-length instructions vreg_idx vreg_i		

re-configurable ASIP with CGRA Accelerator

- Accelerate data path through supporting complex matrix operations on CGRA
 - Including matrix inversion
- Special instructions in processor to implement control path
 - Load/Store with wide bandwidth from/to external memory
 - Scheduling of matrix operation on CGRA by re-configuration

- The two compared architectural approaches
- Efficiency, flexibility, and programmability
- Summary

\bigstar Technology scaling to 90nm \rightarrow qualitative statement

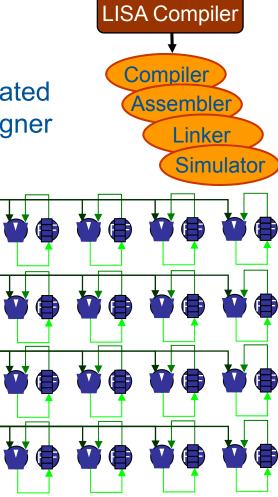
Flexible number format of napCore allows tuning of energy consumption

	rASIP	napCore			9	MMSE PIC	Rank1 Inv
Process	65nm SP	90nm SP		90nm	250nm		
Implementation	layout		layout		tapeout	synthesis	
Architecture class	rASIP		flp. SIMD		ASIC	ASIC	
Iterative	no	yes				yes	no
Clock [MHz]	400		400			568	167
Core voltage [V]	1.0		1.0			1.2	N/A
Scaled clock [MHz]	278		400			568	464
Scaled power [mW]	240		4Q	16Q	64Q	189.1	N/A
		it0	112	147	153		
		it1	98	111	124		
Area [kGE]	458		123		400		
Cycles per EQ	18		81 115		18		
Energy efficiency [vec/uJ]			4Q	16Q	64Q	167	N/A
		it0	44	34	32		
		it1	36	30	28		
Area efficiency [vec/s/GE]	35		40		27	79	51

Flexibility

napCore

- Flexibility enablers
 - Versatile instruction set for complex vector arithmetic
 - Wide dynamic range due to floating-point arithmetic
- Seamless implementation of different
 - MIMO detection algorithms: Open-loop & iterative ...
 - Baseband processing tasks: Channel Est., SINR calc.
 - Vector based applications: Sensor applications
- rASIP
 - Fixed-point arithmetic with flexible scaling mechanism
 - Basic matrix operations to construct complex applications
 - Flexible implementation of control path on processor
 - Targets MIMO detection with different algorithm structures
 - e.g. MMSE-based, MCMC



Programmability

- Programmable via SIMD assembly or C
- All tools (assembler, debugger, etc.) generated automatically by Synopsys Processor Designer
- rASIP
 - CGRA: Programming of matrix operation
 - Operation graph
 - Function patterns
 - Interconnect patterns, e.g. from/to local register file (RF)
 - Tools to map operation graph onto architecture generated from architecture description
 - Map: Instruction selection
 - Route: Interconnects inside/between PE's
 - Processor: Programming via assembly or C

- The two compared architectural approaches
- Efficiency, flexibility, and programmability
- Summary

Summary

napCore

- Flexible and easy-to-use focus on simplicity
- All tools generated automatically
- Programmable in SIMD assembly/C
- Suitable for any complex vector arithmetic algorithm
- Very competitive w.r.t. area efficiency
- Minor drawbacks w.r.t. energy efficiency

rASIP with CGRA Accelerator

- Efficient, but CGRA is hard to program
 - Generated graph-based mapping & routing tools
- Flexible control of reconfiguring CGRA by processor

