
Institute for Communication Technologies and Embedded Systems

MPSoC 2014

Efficiency, Flexibility and
Ease of Programming

A comparison of two opposite architectural approaches

Gerd Ascheid, Xiaolin Chen, Daniel Günther

Agenda

 The two compared architectural approaches

 Efficiency, flexibility, and programmability

 Summary

2

Motivation

 Flexible accelerator for high data rate
wireless baseband processing
 Coarse grained reconfigurable array
 In particular supporting matrix-vector ops (inversion!)
 Basic processing elements are

e.g. (complex) multipliers, square root, …
 Fixed point arithmetic for efficiency
 How close can you get to dedicated ASIC performance?

 Challenge: How does the CGRA performance compare
to an optimized processor?
 „Standard“ features, e.g. SIMD plus
 Conversion of float to fixed not trivial

(numerical stability e.g. of matrix inversion)
-> Optimized floating point performance

3

Arithmetic Structure Data Path Routing

• Floating-point arithmetic for
programmability and
numerical stability

• Energy tuning by bit-
granular operand masking

• SIMD for vector arithmetic
• Pipelined ALU (4-stage) due

to floating-point HW
complexity

• Vector register file
partitioned for element-wise
access (flexibility & energy
optimization)

• Access schemes to
support wide range of
operations

• Permutation units for
vector arithmetic

• Intelligent bypassing for
multiple-length instructions

Lightweight SDR ASIP

4

Make the simplest architecture that can do the job
as efficient as possible

 Focus on programmability, flexibility and usability
 Slim, efficient core – Duplicate for high throughput

re-configurable ASIP with CGRA Accelerator

CGRA Accelerator re-configurable ASIP

5

CGRA

PE 2x2

PE
Chain

d1 d2 d3 d4

PE 2x2

PE 2x2PE 2x2

PE PE

PE PE

PE PE

PE PE

PE PE

Center
Alpha

PE PE

PE PE

PE PE

PE PE

PE PE External
Data

Memory

PF FE DC WB

Register
File

EX

CGRA +
Configuration

Memory

RISC Pipeline

reconfigurable ASIP

 Accelerate data path through supporting complex matrix
operations on CGRA
 Including matrix inversion

 Special instructions in processor to implement control path
 Load/Store with wide bandwidth from/to external memory
 Scheduling of matrix operation on CGRA by re-configuration

Agenda

 The two compared architectural approaches

 Efficiency, flexibility, and programmability

 Summary

6

Efficiency comparison: Linear MIMO detection

 Technology scaling to 90nm qualitative statement
 Flexible number format of napCore allows tuning of energy

consumption

7

rASIP napCore MMSE PIC Rank1 Inv

Process 65nm SP 90nm SP 90nm 250nm

Implementation layout layout tapeout synthesis

Architecture class rASIP flp. SIMD ASIC ASIC

Iterative no yes yes no

Clock [MHz] 400 400 568 167

Core voltage [V] 1.0 1.0 1.2 N/A

Scaled clock [MHz] 278 400 568 464

Scaled power [mW] 240 4Q 16Q 64Q 189.1 N/A
it0 112 147 153

it1 98 111 124

Area [kGE] 458 123 400

Cycles per EQ 18 81 115 18

Energy efficiency [vec/uJ] 67 4Q 16Q 64Q 167 N/A
it0 44 34 32
it1 36 30 28

Area efficiency [vec/s/GE] 35 40 27 79 51

Flexibility

 napCore
 Flexibility enablers
 Versatile instruction set for complex vector arithmetic
 Wide dynamic range due to floating-point arithmetic

 Seamless implementation of different
 MIMO detection algorithms: Open-loop & iterative …
 Baseband processing tasks: Channel Est., SINR calc.
 Vector based applications: Sensor applications

 rASIP
 Fixed-point arithmetic with flexible scaling mechanism
 Basic matrix operations to construct complex applications
 Flexible implementation of control path on processor
 Targets MIMO detection with different algorithm structures
 e.g. MMSE-based, MCMC

8

Programmability

 napCore
 Programmable via SIMD assembly or C
 All tools (assembler, debugger, etc.) generated

automatically by Synopsys Processor Designer
 rASIP
 CGRA: Programming of matrix operation
 Operation graph

• Function patterns
• Interconnect patterns, e.g.

from/to local register file (RF)
 Tools to map operation graph

onto architecture generated
from architecture description

• Map: Instruction selection
• Route: Interconnects inside/between PE’s

 Processor: Programming via assembly or C

LISA Compiler

Compiler
Assembler

Linker
Simulator

× RF × RF × RF × RF

× RF × RF × RF × RF

× RF × RF × RF × RF

× RF × RF × RF × RF

Agenda

 The two compared architectural approaches

 Efficiency, flexibility, and programmability

 Summary

10

Summary

 napCore
 Flexible and easy-to-use – focus on simplicity
 All tools generated automatically
 Programmable in SIMD assembly/C
 Suitable for any complex vector arithmetic algorithm
 Very competitive w.r.t. area efficiency
 Minor drawbacks w.r.t. energy efficiency

 rASIP with CGRA Accelerator
 Efficient, but CGRA is hard to program
 Generated graph-based mapping & routing tools

 Flexible control of reconfiguring CGRA by processor

11

