T el
AP NIVERSITY

MPSoC 2014

Efficiency, Flexibility and
Ease of Programming

A comparison of two opposite architectural approaches

Gerd Ascheid, Xiaolin Chen, Daniel Gunther

ffice

Institute for Communication Technologies and Embedded Systems

" The two compared architectural approaches
= Efficiency, flexibility, and programmability

= Summary

(1CC 2 AN RNERSY

= Flexible accelerator for high data rate
wireless baseband processing

" Coarse grained reconfigurable array
" |n particular supporting matrix-vector ops (inversion!)

" Basic processing elements are
e.g. (complex) multipliers, square root, ...

" Fixed point arithmetic for efficiency
" How close can you get to dedicated ASIC performance?

= Challenge: How does the CGRA performance compare
to an optimized processor?

= Standard® features, e.g. SIMD plus

" Conversion of float to fixed not trivial
(numerical stability e.g. of matrix inversion)
-> Optimized floating point performance

(1CC ; AN RNERSY

Lightweight SDR ASIP

:" Make the simplest architecture that can do the job
as efficient as possible

= Focus on programmability, flexibility and usability
= Slim, efficient core — Duplicate for high throughput

Arithmetic m Data Path Routing

* Floating-point arithmetic for « SIMD for vector arithmetic * Access schemes to
programmability and » Pipelined ALU (4-stage) due support wide range of
numerical stability to floating-point HW operations

* Energy tuning by bit- complexity * Permutation units for
granular operand masking * Vector register file vector arithmetic
0.8 — partitioned for element-wise * Intelligent bypassing for
07l |] access (flexibility & energy multiple-length instructions

S o6l [optimization)
% osf | AR e e i e M
= w e .0 4= I FS R H L e :
ool e mnfgi ‘ n;liij i pc ffF il ext [i| exef |i|reoi|i|Rep2 AN
-t &—ml6 Ep —6—ml6 Eq m = - ‘ — | ' H ‘ sreg_idx 17— SBP % _?_E’ .
01 s s 10 12 1 ; ! v 3 [g
' ' 8l‘s-[aalntii,(:.a bilsLZ : ! Iﬂ, SREGT - __I-EF—

(|CG 4 RWTHAACHEN
UNIVERSITY

re-configurable ASIP with CGRA Accelerator

= Accelerate data path through supporting complex matrix
operations on CGRA

" |ncluding matrix inversion

= Special instructions in processor to implement control path
" | oad/Store with wide bandwidth from/to external memory
® Scheduling of matrix operation on CGRA by re-configuration

CGRA Accelerator re-configurable ASIP

reconfigurable ASIP —>@> CGRA+

> Configuration
S>> Memory
RISCEIPEING o o o | e === = =

PF FE DC ‘

- ———

__________ |

External : I
Data !

Memory

= Efficiency, flexibility, and programmability

(1CC : AN RNERSY

Efficiency comparison: Linear MIMO detection

ATechnology scaling to 90nm - qualitative statement
= Flexible number format of napCore allows tuning of energy

consumption
| cASP_| napCore | MMSEPIC _
Process 65nm SP 90nm SP 90nm 250nm
Implementation layout layout tapeout synthesis
Architecture class rASIP flp. SIMD ASIC ASIC
Iterative no yes yes no
Clock [MHZz] 400 400 568 167
Core voltage [V] 1.0 1.0 1.2 N/A
Scaled clock [MHz] 278 400 568 464
Scaled power [mW] 240 4Q 16Q 64Q 189.1 N/A
it0 112 147 153
it1 98 111 124
Area [kGE] 458 123 400
Cycles per EQ 18 81 115 18
Energy efficiency [vec/uJ] 67 4Q 16Q 64Q 167 N/A
it0 44 34 32
it1 36 30 28
Area efficiency [vec/s/GE] 35 40 27 79 51

rice 7 T

= napCore
" Flexibility enablers
S, " Versatile instruction set for complex vector arithmetic
" Wide dynamic range due to floating-point arithmetic
® Seamless implementation of different
" MIMO detection algorithms: Open-loop & iterative ...
" Baseband processing tasks: Channel Est., SINR calc.
" Vector based applications: Sensor applications
= rASIP
" Fixed-point arithmetic with flexible scaling mechanism
® Basic matrix operations to construct complex applications
" Flexible implementation of control path on processor
" Targets MIMO detection with different algorithm structures
" e.9g. MMSE-based, MCMC

(1CC : AN RNERSY

Programmability

v
= napCore LISA Compiler

" Programmable via SIMD assembly or C m

" All tools (assembler, debugger, etc.) generated
automatically by Synopsys Processor Designer

= rASIP
" CGRA: Programming of matrix operation i i i
" QOperation graph E E #‘? #}
* Function patterns —
* |nterconnect patterns, e.qg. % % ## #l;
from/to local register file (RF) —
" Tools to map operation graph E % ## #}
onto architecture generated _
from architecture description y Y #l;
* Map: Instruction selection % E ##
* Route: Interconnects inside/between PE’s
" Processor: Programming via assembly or C

(1CC AN RNERSY

\4

\4
—

\4

= Summary

(1CC 1 AN RNERSY

= napCore
" Flexible and easy-to-use — focus on simplicity
= All tools generated automatically
" Programmable in SIMD assembly/C
" Suitable for any complex vector arithmetic algorithm
" Very competitive w.r.t. area efficiency
" Minor drawbacks w.r.t. energy efficiency

= rASIP with CGRA Accelerator
= Efficient, but CGRA is hard to program
" Generated graph-based mapping & routing tools
" Flexible control of reconfiguring CGRA by processor

(1CC I AN RNERSY

