
Institute for Communication Technologies and Embedded Systems

MPSoC 2014

Efficiency, Flexibility and 
Ease of Programming

A comparison of two opposite architectural approaches

Gerd Ascheid, Xiaolin Chen, Daniel Günther



Agenda

 The two compared architectural approaches

 Efficiency, flexibility, and programmability

 Summary 

2



Motivation

 Flexible accelerator for high data rate 
wireless baseband processing
 Coarse grained reconfigurable array
 In particular supporting matrix-vector ops (inversion!)
 Basic processing elements are 

e.g. (complex) multipliers, square root, …
 Fixed point arithmetic for efficiency
 How close can you get to dedicated ASIC performance?

 Challenge: How does the CGRA performance compare 
to an optimized processor?
 „Standard“ features, e.g. SIMD plus
 Conversion of float to fixed not trivial 

(numerical stability e.g. of matrix inversion)
-> Optimized floating point performance

3



Arithmetic Structure Data Path Routing

• Floating-point arithmetic for 
programmability and 
numerical stability

• Energy tuning by bit-
granular operand masking

• SIMD for vector arithmetic
• Pipelined ALU (4-stage) due 

to floating-point HW 
complexity

• Vector register file
partitioned for element-wise 
access (flexibility & energy 
optimization)

• Access schemes to 
support wide range of 
operations

• Permutation units for 
vector arithmetic

• Intelligent bypassing for 
multiple-length instructions

Lightweight SDR ASIP

4

Make the simplest architecture that can do the job
as efficient as possible

 Focus on programmability, flexibility and usability
 Slim, efficient core – Duplicate for high throughput



re-configurable ASIP with CGRA Accelerator

CGRA Accelerator re-configurable ASIP

5

CGRA

PE 2x2

PE
Chain

d1 d2 d3 d4

PE 2x2

PE 2x2PE 2x2

PE PE

PE PE

PE PE

PE PE

PE PE

Center
Alpha

PE PE

PE PE

PE PE

PE PE

PE PE External
Data 

Memory

PF FE DC WB

Register
File

EX

CGRA +
Configuration 

Memory

RISC Pipeline

reconfigurable ASIP

 Accelerate data path through supporting complex matrix 
operations on CGRA
 Including matrix inversion

 Special instructions in processor to implement control path
 Load/Store with wide bandwidth from/to external memory
 Scheduling of matrix operation on CGRA by re-configuration



Agenda

 The two compared architectural approaches

 Efficiency, flexibility, and programmability

 Summary 

6



Efficiency comparison: Linear MIMO detection

 Technology scaling to 90nm  qualitative statement
 Flexible number format of napCore allows tuning of energy 

consumption

7

rASIP napCore MMSE PIC Rank1 Inv

Process 65nm SP 90nm SP 90nm 250nm

Implementation layout layout tapeout synthesis

Architecture class rASIP flp. SIMD ASIC ASIC

Iterative no yes yes no

Clock [MHz] 400 400 568 167

Core voltage [V] 1.0 1.0 1.2 N/A

Scaled clock [MHz] 278 400 568 464

Scaled power [mW] 240 4Q 16Q 64Q 189.1 N/A
it0 112 147 153

it1 98 111 124

Area [kGE] 458 123 400

Cycles per EQ 18 81 115 18

Energy efficiency [vec/uJ] 67 4Q 16Q 64Q 167 N/A
it0 44 34 32
it1 36 30 28

Area efficiency [vec/s/GE] 35 40 27 79 51



Flexibility

 napCore
 Flexibility enablers
 Versatile instruction set for complex vector arithmetic
 Wide dynamic range due to floating-point arithmetic

 Seamless implementation of different
 MIMO detection algorithms: Open-loop & iterative …
 Baseband processing tasks: Channel Est., SINR calc.
 Vector based applications: Sensor applications

 rASIP
 Fixed-point arithmetic with flexible scaling mechanism
 Basic matrix operations to construct complex applications
 Flexible implementation of control path on processor
 Targets MIMO detection with different algorithm structures
 e.g. MMSE-based, MCMC

8



Programmability

 napCore
 Programmable via SIMD assembly or C
 All tools (assembler, debugger, etc.) generated 

automatically by Synopsys Processor Designer
 rASIP
 CGRA: Programming of matrix operation
 Operation graph

• Function patterns
• Interconnect patterns, e.g. 

from/to local register file (RF)
 Tools to map operation graph 

onto architecture generated 
from architecture description

• Map: Instruction selection
• Route: Interconnects inside/between PE’s

 Processor: Programming via assembly or C

LISA Compiler

Compiler
Assembler

Linker
Simulator

× RF × RF × RF × RF

× RF × RF × RF × RF

× RF × RF × RF × RF

× RF × RF × RF × RF



Agenda

 The two compared architectural approaches

 Efficiency, flexibility, and programmability

 Summary 

10



Summary

 napCore
 Flexible and easy-to-use – focus on simplicity
 All tools generated automatically 
 Programmable in SIMD assembly/C
 Suitable for any complex vector arithmetic algorithm
 Very competitive w.r.t. area efficiency
 Minor drawbacks w.r.t. energy efficiency

 rASIP with CGRA Accelerator
 Efficient, but CGRA is hard to program
 Generated graph-based mapping & routing tools

 Flexible control of reconfiguring CGRA by processor

11


