Multi-platform Automatic Parallelization and
Power Reduction by OSCAR Compiler

Hironori Kasahara
Professor, Dept. of Computer Science & Engineering
Director, Advanced Multicore Processor Research Institute
Waseda University, Tokyo, Japan

IEEE Computer Society Board of Governors

IEEE Computer Society Multicore STC Chair
URL.: http://www.kasahara.cs.waseda.ac.jp/

OSCAR Parallelizing Compiler

To improve effective performance, cost-performance

and software productivity and reduce power

Multigrain Parallelization

coarse-grain parallelism among loops
and subroutines, near fine grain
parallelism among statements in
addition to loop parallelism

Data Localization

Automatic data management for
distributed shared memory, cache
and local memory

Data Transfer Overlapping

Data transfer overlapping using Data
Transfer Controllers (DMAS)

Power Reduction

Reduction of consumed power by
compiler control DVFS and Power
gating with hardware supports.

88.3% Powér Reduction

T —

(@

Sequential Application OSCAR API for Homogeneous and/or
Program in Fortran or C Heterogeneous Multicores and manycores
(Consumer Electronics, Automobiles, Directives for thread generation, memory,

@ Medical, Scientific computation, etc.) | data transfer using DMA, power
o managements
I3 Manual
” © parallelization / | g Low Power
I - .
- power reduction Parallelized Homogeneous
D APIFor C Multicore Code
c _ .
o | Accelerator Compiler/ User|| Program Generation
o Add “hint” directives ProcO API Existing
g before a loop or a function to . Analyzer [sequential
T | specify itis executable by Code with compiler
the accelerator with directives =
how many clocks Thread 0 Low Power
— Heterogeneous
A Procl Multicore Code
Waseda OSCAR Code with Generation
Parallelizing Compiler directives AIP' EX'SUHQI
. Thread 1 Analyzer| sequentia
» Coarse grain task (Available [compiler
parallellzat_lon_ N T Wgsoe'ga)
» Data Localization Code -
i gMAC da(;atr_ansfer_ MAceeleraiar o1 ESSREIEGE
ower reduction using :
DVFES, Clock/ Power gating nge Genernation
: OpenMP
Hitachi, Rer%esbas, NEC, Compiler
Fujitsu, Toshiba, Denso, : ,
OI)J/mpus, Mitsubishi, OSCAR: Optimally Scheduled Advanced Multiprocessor
Esol, Cats, Gaio, 3 univ. API : Application Program Interface

Shred memory

Multicore Program Pevelopment Using OSCAR APl V2.0

Generation of
parallel machine
codes using

sequential
compilers

Homegeneous

Multicore s

from Vendor A

(SMP servers)

Heterogeneous

Multicores
from Vendor B

|
Executable on various multicores

servers

Model Base Designed Engine Control on
V850 Multicore with Denso

Though so far parallel processing of the engine control on
multicore has been very difficult, Denso and Waseda succeeded
'1.95 times speedup on 2core V850 multicore processor.

Hard real-time
automobile engine

control by multicore
1.95

DiE& (R) 0 b F [Dwns | sEEE
LTty i?:';',_x.
ol -
4 2ol QL% - g
HIEI FoUEFL | g2

uuuuuuuuu . I_-l':w—"' = e

S —y i
=== | i ores

E s WAL

Parallelizing Handwritten Engine Control Programs
on Multi-core processors

e Current automotive crankshaft program
— Developed by TOYOTA Motor Corp
— About 300,000 Lines
— Difficulty of parallel processing

 Too fine granularity

e Many conditional branches and small basic blocks,
but no parallelizable loops
— Minimizing run-time overhead and improvement of parallelism are necessary
» Current product compilers can not parallelize
» Current accelerators are not applicable

[0 Automatic parallelization of a crankshaft program using
multi-grain parallelization in OSCAR Compiler

» Performance improvement and efficient multi-threaded
programming development

Analysis of Coarse Grain Parallelism

by OSCAR Compiler
0 Decomposes a program into coarse grain
Data Dependency tasks, or macro tasks(MTs)

1. BB (Basic Block)
2. RB (Repetition Block, or loop)
3. SB (Subroutine Block, or function)

__ : Data Dependency 1 Generate MFG(MaCI‘O FIOW Gl‘aph)

__. :Control Flow
O pimenon 0 Control flow and data dependencies
0 Generates MTG(Macro Task Graph)

0 Coarse grain parallelism

Control Flow

S . -
........
="

Earliest Executable Cond|t|___1_q;_:,=__—.,

Conditional Branch

ow Graph

Macro-Task Graph

Coarse Grain Task Parallelization
of Hand-written Engine Control Program

subroutine block [Jj basic block
oLoop parallelization
~No parallelizable loops
In engine control codes

oFine grain parallelization

~Each BBs are very low cost
less than 100 clock cycles

~Branches prevent compilers

nCoarse grain parallelization

~Utilize parallelism between
SBs and BBs

MTG of crankshaft programs

Static Task Scheduling

O _Dynamic task scheduling

O Prevent from traceability
0 Add run-time overhead

0 Static task scheduling

O Guarantee Real-time constraints
0 Ensure traceability
O Minimize run-time overhead
0 Cannot assigh BBs having braches statically

O Static task scheduling can be applied if the MTG has only
data dependency

O The compiler cannot see if the branch
is taken or not at compile time.

O Fuse tasks by hiding conditional branches in MFG
to avoid dynamic task scheduling

» Macro Task Fusion

mtl

MFG of sample program

Analysis of A Crankshaft Program Using
Macro Task Fusion

sb4 and block5 account for }

s .
subroutine blnck- basic block over 90% of whole execution

Can not schedule MTs at compile time J

subroutine block

- basic block

|:| task fusion block

MTG of cran '

task fusion MTG of crankshaft program after

macro task fusion

There is nhot enough parallelism

MTG of Crankshaft Program Using Inline Expansion and
Duplicating If-statements

CP accounts fOI’ e subroutine block
over 99% Of WhOIe '___:_:_:_::_ = (DT B R B basic block

eXGCUtIOH tlme e FETE] O ocfc A Ao [] task fusion block
[

\LCrltical Path(CP)

CP accounts for
about 60% of whole
execution time.

J

MTG of crankshaft program before restructuring

0 Succeed to reduce CP
0O 99% -> 60%

m
MTG of crankshaft program after restructuring

Successfully increased coarse grain parallelism

Evaluation Environment :
Embedded Multi-core Processor RPX

Cluster #0 Cluster #1

SH-4A ‘ \ SH-4A

| | —sn
[SHwyH0 »dses—s0.0aa-128) H_SHwy#lqmdmu 40Dm m} | SH-4A

| | | CPU | FPU || DTU
peESAPMA DB sz
| # | w0 |[VPYS "D EI sc" 15 |crRu| Ds
ILM [qu oM | |H
SHPB) | SHWYE2 i adross=—32.0m0-64) | -,* is
| | | | ‘ b
Pcl ||5ATA||SFU1 LBSC y SNC L2C

‘l‘
i

e SH-4A 648MHz * 8

— As a first step, we use just two SH-4A cores because target dual-core
processors are currently under design for next-generation automobiles

Evaluation of Crankshaft Program with Multi-
core Processors

1.80 0.60
e (.57 1.54
1.60 - 050 X
S | 140 | &
© | 1.20 040 S
2 | 1.00 S
> L
§ 0.80 0.30 =
a | 0.60 020 ™
0.40 c
090 - 0.10
0.00 0.00

1 core 2 core

o Attain 1.54 times speedup on RPX

— There are no loops, but only many conditional branches and small basic blocks and
difficult to parallelize this program

o This result shows possibility of multi-core processor for engine
control programs

Performance of OSCAR Compiler
on Intel Core i7 Notebook PC

4.50

. 4,12

oo .| Intel Compiler Ver.14.0 | CPU: Intel Core i7 3720QM (Quad-core)

' I OSCAR MEM: 32GB DDR3-SODIMM PC3-12800

3.50 — OS: Ubuntu 12.04 LTS

2.91

c_) 3.00 270
E 2.53
5 =" 2.24
2
$ 2.00 170
i% 1.50

' 1.18

1.00 1.00 1.00

1.00

0.50 -

0.00 -

SPEC95 su2cor SPEC95 SPEC95 mgrid SPEC95 turb3d AAC Encoder
hydro2d
e OSCAR Compiler accelerate Intel Compiler about 2.0 times

on average

Parallel Processing of JPEG XR Encoder on TILEPro64

[\(Speedup (JPEG XR Encoder) R
. Multimedia Applications: fAACEncoder 55x speedup on 64 cores
S tial C S Cod JPEG XR Encoder 60.00 55
equentia ource Lode ptical Flow Calc. m Default Cache Allocation X
OSCAR Compiler 50.00 || ™ Our Cache Allocation
Cache 40.00
@ Parallelized C Program NP o (2)Cache Allocation Set
Y/ with OSCAR API AFSHTIS £ 3000
API Analyzer + ' &
Sequential Compiler 20.00
(1)OSCAR Parall
Parallelized Executable Binary 1000
4 for TILEPro64
0.00
1 64
Cores

Local cache optimization:
Parallel Data Structure (tile) on heap

allocating to local cache
q y

Parallel Processing of Face Detection on Manycore,

14.00 -+

12.00 -

10.00 -

R R
00
8

4.00

2.00

0.00 -

6.00 -

Highend and PC Server

H tilepro64 gcc
| ®mSR16k(Power7 8core*4cpu*4node) xlc | 11 .55

1 rs440(Intel Xeon 8core*4cpu) icc

6.46 6.46

1721.931.93

1.001.001.00

1 2 £ 8 16

e OSCAR compiler gives us 11.55 times speedup for 16 cores against 1 core
on SR16000 Power7 highend server.

Lewel [m¥1

92 Times Speedup against the Sequential
Processing for GMS Earthquake Wave

Propagation Simulation on Hitachi SR16000
(Power7 Based 128 Core Linux SMP)

2012-95-16 11:00 - 2012-05-17 11:00 VERT = (X axis Max is 1300)

Speedup against sequentialﬂ processing

=
[
<

L2
<

80 -

70

60 -

50

40

30

20

10

(i
1
3]

Research Center Project

-]
-
-
=
2
=
=]
(&)
c
@
Q
1=
o

’ R—/IN—FZ=H) Y —/ SRT16000F /L VIV

e e

WASEDA Uniy,
| oscar

1pe

2pe 4pe 8pe 16pe 32pe 64pe 128pe

Profile—-Based Automatic Parallelization and Sequential = OSCAR Compiler
m Skia

Program Tuning for Android 2D Rendering on Nexus7 o Multicore

Wasepa University

(. . “ . » RY£ 5 0 . . "\ (“ . » .
@ Android 2D Rendering “ Skia Profile-Based Automatic Parallelization @ Skia” Profiling
Standard library which performs 2D rendering on Apdroidinal Compilation JE— B T
Profilin:
Transform figure to some paths ﬁ Cﬁ?‘\h;il “ By Oprgﬁle others
Path E l l h é 2.57%
Generation @ 9 (Ge(!.‘C) 9 Sequentia? _ ‘
OWginal Source f Binary File = Profile ReSult
Make a color data from a Com (. e RS - -
W Transform path to Bitmap(Mask) S
Shading Rasterl;izatio @ ¢
\ ewite to nalyze
Parallelizabl ﬁesult < Hotspot Analyzer 1 .,.biéé”f'ggga”saf@é%&%d
image W IeE
. - destination fr f%]s 11.22%
BitBlit ! Parallelizing Hotspot bl pagt
Image Fotspot Source File Information f‘ﬁ?y?*
5705 SKRGB16._Blitter

L\ 4

OSCAR Parallelization Compiler

Calculate and transfer display image from
source image, mask and destination image.

Skia 2D Rendering Pipeline

modified
destination Image

_ J
(7 \ “ap: P q
@ Tuning Method for “Skia [DrawRect]\ Google NEXUS 7 * perBlﬁgllgBﬁsﬁns::QEM&s
Void SKRGB16_Blitter::blitRect(int x, int y, int width, int height) { NVIDIA Tegra3 Chip OSCAR S Iphiﬁ]?&:a%ﬂl?i%n R01%
SKASSERT(x + width <= fDevice.width() && y + height <= fDevice.height(); Processor : NVIDIA Tegia3 [lir— 2.47%
it dodens toocarownasd; ARM Cortex A9 - 4C0regr E —_—> AIP I —> > | ARM SkRGH16_Bitter:bitRect
SKPMColor src32 = fSrcColora2; ' Clock Frequency : 1.2[GHz] Analyzer Parallelized Source I'ileomp"e 8.54% ‘
while (~-height >= 0) { Parallelized Source Files r . ;
S A— with OSCAR API E > | (6co) > ; ranti
device = (uint16_t*)((char*)device + deviceRB); 1ze
) E OSTAR API Binary File
\ AN Runtime Library J L DrawCircle2 J
Driginal Source Code (. oPerrormance
Evaluatlons oOxbenchmark 2D Canvas Test
oid SKRGB16_Blitter::bli Linty, int width, int heigtt) { . - . .
e ol | T s Finish15sec | Parallelized Skia — 3PE | Finish 8sec
unsigned deviceRB = fDevice.rowBytes(); M 52.88
S e sepdratd [. o s i Lo I bos L %0 5098 5077 9299
SKRGB16_Blitter_blitRect_oscar(width, height, device, de ice(R:;-s;tazflle CPU 1: ‘ CPU1: I”"I I|‘I" I"” "” ”"' \|| |\|”|| ”" -é%o
CPU 2: I i CPU 2: 2
2 = Skia Execution . . 240
PU 3: Iskia Execution| 5
T — — ‘B0
. unsigned deviceRB, SkPMIColor src32) { s [5900 mg [5950 ms [6000 ms [6050 [5400.mg [5450.mg [5500.mg [5550.mg ‘E’
CPU 0: 1] 1Frame || CPUO: | 20
for (i = height; i > 0; i-) . CPU 1: %
S T CPUI:| | I 50msec : 210
, blend32_16_row(src32, deviceTMP, width); CPU 2: #1330 W Tiread13al| Thread133 mzboﬂ-l CPU 2: ‘ [y
CPU 3: e e, e Tee. el O g
D Rect rawCircle?:--
CPU Load Graph [DrawRect] N enchmarks
/

T ol o i e
\ MTUCTUCPTTIUCTICY UlIT varialICT uUcCVvVILCN)l \

Green Computing Systems Research and Development Center Waseda University

Parallelization of 2D Rendering Engine SKIA on 3 cores of
Google NEXUS7

http://www.youtube.com/channel/UCS43INYEIKC8i_KIgFZYQBQ

DrawRect :FPS DrawImage : FPS
60 60 52.88

xX1.91 43.57 X1.95

45

20 27.16

1Sj N
0 - 0 -

1 Core 3 cores 1 Core 3 cores

for DrawRect 1.91 speedup

On Nexus7, 3 core parallelization gave us
for DrawIlmage 1.95 speedup

Low-Power Optimization with OSCAR API

Scheduled Result
by OSCAR Compiler

VCO VC1

N,
|

Generate Code Image by OSCAR Compiler

void void
main_VCO0() { main_VC1() {

#pragma oscar fvcontrol ¥
(OSCAR CPU(),0))

#pragma oscar fvcontrol ¥
(1,(OSCAR_CPUY(), 100))$

}

Power Reduction of MPEGZ2 Decoding to 1/4
on 8 Core Homogeneous Multicore RP-2

by OSCAR Parallelizing Compiler
MPEG2 Decoding with 8 CPU cores

8= Without Power With Power Control
- Control 7 (Frequency,
(Voltage : 1.4V) | Resume Standby: o

Power shutdown &
6 — Voltage lowering 1.4V-1.0V)

|

AvQ. Power 73 504 power Reduction AVY. Power

573 [W]) 152 [\\/]

33 Times Speedup Using

OSCAR Compiler and OSCAR API on RP-X

35 ~

1 SH-4A \

30

15

10

Speedups against a single SH processor

25 +—

T PCl |saral[spuz|[Lasc] —FPB__]

1 1SSCC2010

(Optical Flow with a hand-tuned I|brary) 111[fps]

Cluster#0 Cluster #1

32.65

[SHWYHU sddress=10 Data=128) H SHwy#1 Address= 40 Data= 128

I I I
DBSC||IDMAC VPUS FE DMAC DBSC MX2
#0 #0 #0-3 #1 #1 #0-1
@ | SHWV# {Address=32 Data=64) |

exp

Y. Yuyama, et al., "A 45nm 37.3GOPS/W Heterogeneous Multi-Core SoC",

| .

54

3.4[fps]]

'\/ 2.29
1

4SH 8SH 2SH+1FE 4SH+2FE 8SH+4FE

Power Reduction in a real-time execution controlled
by OSCAR Compiler and OSCAR API on RP-X

(Optical Flow with a hand-tuned library)
- - With Power Reduction
Without Power Reduction by OSCAR Compiler

70% of power reduction

Average:|.76[W] » Average:0.54[W]

Power [W]/ Voltage [V]

2.5

N — 2

N
n

N

=
v

Power[W] / Voltage [V]

. —Voltage [V] 1 [_—| ! [1 —\Voltage [V]
—Power [W] —Power [W]
0.5 0.5 'I

o
o

200 400 600 800 1000 0 200 400 600 00 1000
Bl %l

o

1cycle : 33[ms] | [(
->30[fps] J

Automatic Power Reduction for

MPEG2 Decode on Android Multicore

ODROID X2 ARM Cortex-A9 4 cores
http://www.youtube.com/channel/UCS43INYEIKC8i_KIgFZYQBQ

Without Power With Power

Reduction Reduction

3.00 279
E 2.50 -

il
K

1/4
0.46 (-75.5%)

(350% 3

' (-61.9%)

0.37

o

Ul

o
|

wer Consumptio
MY
o
o

S 0.00

3

Number of Processor Cores

* On 3 cores, Automatic Power Reduction control successfully reduced power to
1/7 against without Power Reduction control.

o 3 cores with the compiler power reduction control reduced power to 1/3 against
ordinary 1 core execution.

Automatic Power
Reduction on 4 ”
core Intel Haswell [

Graphics

. Haswell Processor OO
— OS Ubuntu 13.10 |
— Intel CPU Core 17 4770K

» 4 cores

L1 Cache: Load 64Bytes/cycle, Store 32Bytes/cycle
L2 Cache 64Bytes/cycle

L3 Cache 8 MB

Frequency 3.5GHz~0.8MHz

— Memory 16GB (8GB X 2)

¥ Display
== Engine & §

Memory &

&4 Controller f_

including 8

$= 0 Dpisplay, PCle §
=13 = and DMI 10s &

Power Reduction on Intel Haswell
for Real-time Optical Flow

Without With For HD 720p(1280x720) movmg pictures
m Power = Power
Control Control
50.00
— 40.00
2 /
§ 30.00 29.25 2840
g ower was
% 20.00 - reduced to
o 1/3
z 1000 - compared
0.00 - with one
1 5 3 core
No. of Processor Cores ordinal
Power was reduced to 1/4 by the compiler power execution

optimization on the same 3 cores.
The power with 3 core was reduced to 1/3 against 1 core.

Power Waves for 1 Core to 3 Cores without the
Compiler Power Control on Intel Haswyell

for Real-time Optical Flow

2 Cores 3 Cores

Power Waves for 1 Core to 3 Cores with the
Compiler Power Control on Intel Haswyell
time O Cf

100ms/Div CALC-0Z:P ! = B8.3333W/Div

for

Power for 1 & 3Cores without Control
vs. for 3 Cores with Control on Haswell

With Power Control

ihutPr onoI

Future Multicore Products

Next Generation Automobiles
- Safer, more comfortable, energy efficient, environment

friendly
- Cameras, radar, car2car communication, internet
information integrated brake, steering, engine, moter

control

4

: P | / Regional
Advanced medical systems ersonal / Regiona

Supercomputers

c treat " ¢ Solar powered with more than 100
a.n cer re? ment, times power efficient : FLOPS/W
Drinkable inner camera . : .
* Regional Disaster Simulators
* Emergency solar powered .
saving lives from tornadoes,

* No cooling fun, No dust, . L .
o localized heavy rain, fires with
clean usable inside OP room
earth quakes

s e |
-From everyday recharging to
less than once a week

- Solar powered operation in
emergency condition

- Keep health

