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OSCAR Parallelizing Compiler

To improve effective performance, cost-performance

and software productivity and reduce power

Multigrain Parallelization

coarse-grain parallelism among loops
and subroutines, near fine grain
parallelism among statements in
addition to loop parallelism

Data Localization

Automatic data management for
distributed shared memory, cache
and local memory

Data Transfer Overlapping

Data transfer overlapping using Data
Transfer Controllers (DMAS)

Power Reduction

Reduction of consumed power by
compiler control DVFS and Power
gating with hardware supports.

88.3% Powér Reduction
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Model Base Designed Engine Control on
V850 Multicore with Denso

Though so far parallel processing of the engine control on
multicore has been very difficult, Denso and Waseda succeeded
'1.95 times speedup on 2core V850 multicore processor.

Hard real-time
automobile engine

control by multicore
1.95
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Parallelizing Handwritten Engine Control Programs
on Multi-core processors

e Current automotive crankshaft program
— Developed by TOYOTA Motor Corp
— About 300,000 Lines
— Difficulty of parallel processing

 Too fine granularity

e Many conditional branches and small basic blocks,
but no parallelizable loops
— Minimizing run-time overhead and improvement of parallelism are necessary
» Current product compilers can not parallelize
» Current accelerators are not applicable

[0 Automatic parallelization of a crankshaft program using
multi-grain parallelization in OSCAR Compiler

» Performance improvement and efficient multi-threaded
programming development



Analysis of Coarse Grain Parallelism

by OSCAR Compiler
0 Decomposes a program into coarse grain
Data Dependency tasks, or macro tasks(MTs)

1. BB (Basic Block)
2. RB (Repetition Block, or loop)
3. SB (Subroutine Block, or function)

__ : Data Dependency 1 Generate MFG(MaCI‘O FIOW Gl‘aph)

__. :Control Flow
O pimenon 0 Control flow and data dependencies
0 Generates MTG(Macro Task Graph)

0 Coarse grain parallelism

Control Flow
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Coarse Grain Task Parallelization
of Hand-written Engine Control Program

subroutine block [Jj basic block
oLoop parallelization
~No parallelizable loops
In engine control codes

oFine grain parallelization

~Each BBs are very low cost
less than 100 clock cycles

~Branches prevent compilers

nCoarse grain parallelization

~Utilize parallelism between
SBs and BBs

MTG of crankshaft programs



Static Task Scheduling

O _Dynamic task scheduling

O Prevent from traceability
0 Add run-time overhead

0 Static task scheduling

O Guarantee Real-time constraints
0 Ensure traceability
O Minimize run-time overhead
0 Cannot assigh BBs having braches statically

O Static task scheduling can be applied if the MTG has only
data dependency

O The compiler cannot see if the branch
is taken or not at compile time.

O Fuse tasks by hiding conditional branches in MFG
to avoid dynamic task scheduling

» Macro Task Fusion

mtl

MFG of sample program



Analysis of A Crankshaft Program Using
Macro Task Fusion

sb4 and block5 account for }

s .
subroutine blnck- basic block over 90% of whole execution

Can not schedule MTs at compile time J

subroutine block

- basic block

|:| task fusion block

MTG of cran '

task fusion MTG of crankshaft program after

macro task fusion

There is nhot enough parallelism



MTG of Crankshaft Program Using Inline Expansion and
Duplicating If-statements

CP accounts fOI’ e subroutine block
over 99% Of WhOIe '___:_:_:_::_ = ( DT B R B basic block

eXGCUtIOH tlme e FETE] O ocfc A Ao [ ] task fusion block
[

\LCrltical Path(CP)

CP accounts for
about 60% of whole
execution time.

J

MTG of crankshaft program before restructuring

0 Succeed to reduce CP
0O 99% -> 60%

m
MTG of crankshaft program after restructuring

Successfully increased coarse grain parallelism




Evaluation Environment :
Embedded Multi-core Processor RPX
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e SH-4A 648MHz * 8

— As a first step, we use just two SH-4A cores because target dual-core
processors are currently under design for next-generation automobiles



Evaluation of Crankshaft Program with Multi-
core Processors
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o Attain 1.54 times speedup on RPX

— There are no loops, but only many conditional branches and small basic blocks and
difficult to parallelize this program

o This result shows possibility of multi-core processor for engine
control programs



Performance of OSCAR Compiler
on Intel Core i7 Notebook PC
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Parallel Processing of JPEG XR Encoder on TILEPro64
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Parallel Processing of Face Detection on Manycore,
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e OSCAR compiler gives us 11.55 times speedup for 16 cores against 1 core
on SR16000 Power7 highend server.
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92 Times Speedup against the Sequential
Processing for GMS Earthquake Wave

Propagation Simulation on Hitachi SR16000
(Power7 Based 128 Core Linux SMP)

2012-95-16 11:00 - 2012-05-17 11:00 VERT = (X axis Max is 1300)

Speedup against sequentialﬂ processing
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Profile—-Based Automatic Parallelization and Sequential = OSCAR Compiler
m  Skia

Program Tuning for Android 2D Rendering on Nexus7 o Multicore

Wasepa University
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Parallelization of 2D Rendering Engine SKIA on 3 cores of
Google NEXUS7

http://www.youtube.com/channel/UCS43INYEIKC8i_KIgFZYQBQ
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1 Core 3 cores 1 Core 3 cores

for DrawRect 1.91 speedup

On Nexus7, 3 core parallelization gave us
for DrawIlmage 1.95 speedup



Low-Power Optimization with OSCAR API

Scheduled Result
by OSCAR Compiler

VCO VC1

N,
|

Generate Code Image by OSCAR Compiler

void void
main_VCO0() { main_VC1() {

#pragma oscar fvcontrol ¥
(OSCAR CPU(),0))

#pragma oscar fvcontrol ¥
(1,(OSCAR_CPUY(), 100))$

}




Power Reduction of MPEGZ2 Decoding to 1/4
on 8 Core Homogeneous Multicore RP-2

by OSCAR Parallelizing Compiler
MPEG2 Decoding with 8 CPU cores

8= Without Power With Power Control
- Control 7 (Frequency,
(Voltage : 1.4V) | Resume Standby: o

Power shutdown &
6 — Voltage lowering 1.4V-1.0V)
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33 Times Speedup Using

OSCAR Compiler and OSCAR API on RP-X
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Power Reduction in a real-time execution controlled
by OSCAR Compiler and OSCAR API on RP-X

(Optical Flow with a hand-tuned library)
- - With Power Reduction
Without Power Reduction by OSCAR Compiler

70% of power reduction
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Automatic Power Reduction for

MPEG2 Decode on Android Multicore

ODROID X2 ARM Cortex-A9 4 cores
http://www.youtube.com/channel/UCS43INYEIKC8i_KIgFZYQBQ
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Number of Processor Cores

* On 3 cores, Automatic Power Reduction control successfully reduced power to
1/7 against without Power Reduction control.

o 3 cores with the compiler power reduction control reduced power to 1/3 against
ordinary 1 core execution.



Automatic Power
Reduction on 4 ”
core Intel Haswell [

Graphics

. Haswell Processor OO
— OS Ubuntu 13.10 |
— Intel CPU Core 17 4770K

» 4 cores

L1 Cache: Load 64Bytes/cycle, Store 32Bytes/cycle
L2 Cache 64Bytes/cycle

L3 Cache 8 MB

Frequency 3.5GHz~0.8MHz

— Memory 16GB (8GB X 2)
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Power Reduction on Intel Haswell
for Real-time Optical Flow

Without With For HD 720p(1280x720) movmg pictures
m Power = Power
Control Control
50.00
— 40.00
2 /
§ 30.00 29.25 2840
g ower was
% 20.00 - reduced to
o 1/3
z 1000 - compared
0.00 - with one
1 5 3 core
No. of Processor Cores ordinal
Power was reduced to 1/4 by the compiler power execution

optimization on the same 3 cores.
The power with 3 core was reduced to 1/3 against 1 core.



Power Waves for 1 Core to 3 Cores without the
Compiler Power Control on Intel Haswyell

for Real-time Optical Flow

2 Cores 3 Cores




Power Waves for 1 Core to 3 Cores with the
Compiler Power Control on Intel Haswyell
time O Cf
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Power for 1 & 3Cores without Control
vs. for 3 Cores with Control on Haswell

With Power Control
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Future Multicore Products

Next Generation Automobiles
- Safer, more comfortable, energy efficient, environment

friendly
- Cameras, radar, car2car communication, internet
information integrated brake, steering, engine, moter

control

4

: P | / Regional
Advanced medical systems ersonal / Regiona

Supercomputers

c treat " ¢ Solar powered with more than 100
a.n cer re? ment, times power efficient : FLOPS/W
Drinkable inner camera . : .
* Regional Disaster Simulators
* Emergency solar powered .
saving lives from tornadoes,

* No cooling fun, No dust, . L .
o localized heavy rain, fires with
clean usable inside OP room
earth quakes

s e |
-From everyday recharging to
less than once a week

- Solar powered operation in
emergency condition

- Keep health



