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Why is Size/Power/Energy Efficiency Important?
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A\ Power and Cooling costs & Improve PUE

(Power Usage Effectiveness)

* Electricity growth
— 56% increase 2005-2010 (US increase 36%)
— 19% increase 2011-2012
W New server spending ($B)

_ o/ : .
7% increase in 2013 C—Server management and administration costs ($B)

— 1.1%-1.5% of global electricity 2010 mmmm Power and cooling costs (3B)
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* PUE=1.16in 2010

* PUE=1.14in 2011
e Environmental friendliness programs 2 1.1s-
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FOE (Switzerland)
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Energy Proportionality in Datacenters

* Most of the time at 10 — 50%
e Challenge: E oae |

— Power not proportional to utilization :m "

— Server underutilized ol N -

N

* Two approaches: % o1 02 03 ‘04cpuu:;mnb,aHmﬂ?“‘m“ﬂ‘03;2‘“:1‘0

— Turn off hardware when not used -

* Dynamic Voltage Scaling (DVS) 0 i e

* Clock Gating
— Keep CPU utilization high

Server power usage (percent of peak)
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< Multiple Virtual Machines :E
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Aligning energy use with workloads
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Why many small cores?

& Scale out applications require large number of cores no brute processors
@ Smaller cores more power-efficient for several workloads

— static web page serving, entry dedicated hosting, and basic content delivery,
among others

© Less power consumption (sub-10W levels)
— Lower running costs, lower PUE
© Energy proportionality
— Easy to turn off idle cores (parts of the system)
© Easier maintenance and management
— Small form factor allows tightly packed clusters and less physical space
@ Easier more efficient implementation?
— CPU partitioning instead of sharing (no sharing overhead)
* But...

$ No compute power for single-threaded application
$ Hard to parallelize an application
$ Not so efficient for HPC domain?
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Energy-efficient architecture: Microservers

* Low-power components
— CPU (ARM, Intel Atom)
— Memory (HMC)

— Storage (NVM)

e Small form factor

— Small CPUs o |
Worldwide Micro Server ShipmentForecast
: _ Ship
— Fast interconnections 1,400 | b e

i : H 1,200
(high-speed serial links) -
— High integration 800
600

* Microservers are still in their
200
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Source: IHS iSuppli Research, February 2013
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Intel or ARM in Microservers?

* Diversity of ARM ecosystem
— Custom microservers using ARM-based SoCs
% Hundreds of customers
* More than 50 variations of Intel Atom and Xeon
— Xeon E3 suitable for webscale applications, online gaming, cloud
— Atom C2000 suitable for lightweight scale-out workloads
¢ Hard to compete hundreds of chip-makers (Samsung Exynos, AMD Opteron
A1100 with 8 A-57, APM’s X-Gene, Google, Facebook, ...)

* However
— Intel first released 64-bit SoC with ECC (Atom Avoton)

— Intel 3-D technology
& smaller die area
& |ess energy consumption
— Most datacenter software run on x86 (porting on ARM in progress)

Calxeda: ARM-based servers didn't have the software support or hardware needed

to win enterprise customers
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EUROSERVER Challenges and Approach

= Energy-efficient architecture

— Use of highly-integrated, high-performance, energy-efficient components in a
Microserver arcitecture

 Many low-power ARMv8
* 3D - Interposer Technology
* HMC main memory
* NVM memory for storage
“ Suitable from cloud data-centers to embedded applications
— Unimem Architecture (Focus of this presentation)
— Take advantage of fast communication
# Scalable architecture
— Many coherent islands
— Global Address Space
“ Facilitate maintenance and management
— Small form factor

= Energy proportionality
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EUROSERVER Architecture

Chiplet: Node: uServer:
Cores+L0 Coherent

Chiplets+L1 Interconnect

Nodes+L2 Interconnect
Shared 10 and Storage

Scale-out or HPC

Interconnect
1 coherence island

| v
v EuroServer System
Compute Node 0 Compute Node 1 Compute Node 2 Compute Node ....
HMC HMC HMC HMC HMC HMC HMC HMC
memory memory memory memory memory memory| | | |memory memory
L r 1 S R v I O t * 1+ ¢ 5 ] F *
ARM | | £| | ARM ARM | | £| | ARM ARM | |£| | ARM ARM | S| | ARM
© LYYy © (] ©
64b =z 64b 64b £ 64b 64b £ 64b 64b £ 64b
A A A
\ Intralink | \ Intralink | \ Intralink | ‘ Intralink |
A A A A
‘Node-SSD‘ ‘Local-lo‘ ‘Node-SSD‘ ‘Local-lo‘ ‘Node—SSD‘ ‘Local-lo‘ ‘Node-SSD‘ ‘Local-lo‘
y N \ 4
‘ Interlink ‘
System: s 4
Nodes+L3
>
Interconnect other pServers Ethernet John Goodacre’ ARM
v v

* Clustered Architecture: Coherence Islands communicating through multi-level Interconnect
e Shared IO’s

* Each Coherence Island has its own local independent global (coherent) address space (GASY)
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Unimem Architecture
uServer0 Compute Node 0 Compute Node 1 Compute Node 2 Compute Node 3
’MC HMC HMC HMC Hl\,ﬁ HMC HMC HMC
§ D 4 0 4 0 4 0
ARMvVS ARMvS ARMV8 | . | ARMvS8 ARMY8 ARMvS8 ARMvS8 ARMvS
\ ¢ Iink¢ | \ ¢ Intralink¢ | \ ¢|l'I'Htralinkt | \ ¢ Intxalink¢ |
||| . 1
\4 v v
| Hrkertinde |
A A
Ethernet ¥ ¥ other MicroServers
MServerl Compute Node 0 Compute Node 1 Compute Node 2 Compute Node 3
HMC HMC HMC HMC HV HMC HMC HMC
4 0 4 ¥ 4 x 4 x
ARMV8 | | ARMvVS ARMvV8 | | ARMvS ARMY8 | .| ARMvS ARMv8 ARMv8
\ ¢ IntrAaIink¢ | \ ¢ IntraIink¢ | \ ¢II'fﬂtralinkt | \ ¢ Intralink |
T | [
v Vv v v
\ . Interlihk pr— |

Ethernet ¥ J' other MicroServers

John Goodacre, ARM
* Every memory page has a single owner (coherence island)

* A processor can access any page in the system through the page owner’s coherent interconnect

* Every page can be cacheable either locally (single borrower) or remotely (owner) — but not both
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EUROSERVER environment

Coherence IslandO

Quad Quad
ARMvS ARMvS8 DMA

I A

Coherence Islandl

ACE ACE ACE Lite
Local Cache Coherent Interconnect

Quad Quad
ARMvS ARMvS8 DMA

! A

8-core Chiplet

ACE ACE ACE Lite
Local Cache Coherent Interconnect

AXI ACE Lite AXI
I '
DMC Chip2
Chip
A

v A

ACE Lite AXI AXI
Chip2 DMC
Chip
4 -core Chiplet

\ 4 \4

DRAM

Multi-level Global Interconnect

DRAM

 Two coherence islands might belong in the same Compute Node (intralink
communication) or not (intralink + interlink communication)

[
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Remote Page Borrowing

Coherence IslandO Coherence Islandl

* Locally cacheable (initiator’s cache)

E
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Quad Quad Quad Quad
ARMv8 ARMv8 DMA ARMv8 ARMv8 DMA
Miss/RepIace
\ 4 \ 4 \ 4 \ 4
ACE Lite ACE ACE Lite
LocaI Cache Coherent Interconnect LocaI Cache Coherent Interconnect
AXI ACE Lite AXI ACE Lite-AXl AXI
A / v
Chipz Chip2
DMC Chip Chip DMC
8-core Chiplet 4 4 -core Chiplet
v \ 4 \ 4 v
DRAM Multi-level Global Interconnect IMM
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Shared Memory

Coherence IslandO Coherence Islandl
Quad Quad Quad Quad
ARMv8 ARMv8 DMA AﬁMVS ARMv8 DMA
Miss/Replace
\ 4 \ 4 \4 \ 4
ACE ACE ACE [ite ACE ACE ACE Lite
Local Cache Coherent Interconnect Logall Cache Coherent Interconnect
AXI ACE Lite AKI ACE Litelax AXI
A / v
Chip? Chip2
DMC Chip Chip DMC
8-core Chiplet 4 4 -core Chiplet
v \ 4 \ 4 v
DRAM Multi-level Global Interconnect IMM

 Remotely cacheable (owner’s cache)
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Coherence IslandO

RDMA

Coherence Islandl

Quad Quad Quad Quad
ARW8 ARMv8 DMA ARMv8 ARMv8 DMA
Ay
Miss/Replace | | v Read|] [Write :" : v
ACE Litk - ACE ACE Lite
%I Cache Co l-uerent Interconned Loqal C}ache Coherent Interconnect
ACE Lite AKI ACE ke X
1
| ; L/
| Chip Chip2
OMcC Chip Chip DMC
8-core Chiplet | Y 4 -core Chiplet
VI \ 4 \ 4 v
A 4 L Z

DRAM

* DMA reads from (or writes to) DRAM on Coherence Island0 and writes to (or reads

Multi-level Global Interconnect

from) DRAM on Coherence Island1

» Accesses can also be uncacheable locally or cacheable remotely (dashed lines)
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NUMA-aware linux

Coherence IslandO Coherence Islandl
Quad Quad Quad Quad
ARMv8 ARMv8 DMA ARMv8 ARMv8 DMA
Miss/RepIace
\ 4 \ 4 \ 4 \ 4
ACE Lite ACE ACE Lite
LocaI Cache Coherent Interconnect LocaI Cache Coherent Interconnect
AXI ACE Lite AKI ACE Lite-AX! AXI
| | ) I
D Chipz Chip2 DMIC
MC Chip Chip
8-core Chiplet 4 4 -core Chiplet
v y \ 4 v
DRAM Multi-level Global Interconnect IMM

Borrow unused remote memory instead of page faulting
Fast shared memory and MPI communication
NUMA-aware memory allocator and garbage collector
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Initial Testing Environment using A9-based boards

ZedBoard O ZedBoard 1
DRAM DRAM
E
A Al
FPGA FPGA
Cache AQ INT Cache A9 T
® o core
INT+— |NTC INT<4— INTC
M (GP) S (ACP) A M (GP) S (AGP) A
Al
DMA

A
DMA
A

A
\ 4 \ 4 \ 4
A¥érrrenconnect (64bit @ 100MHz) | AXI Interconnect (b 00MHz) |

\ 4 v
S_Chip2Chip M S Chip2¢
Master/Slave

Mastpr/Slave
|
|

|
AMC | FMVIC

FMC to FMC cable (6.4Gb/s)

e Can we interconnect more A9 processors? (see next slides)
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FMC Fan-Out Daughtercard v.1

2MicroZed boards (40LVDS per board) 4 MicroZed boards (20 LVDS per board)
MicroHeader MicroHeader __———> MicroHeader MicroHeader €——____ _
mechanical  pz0 MZ1 mechanical
support support
MicroHeader MicroHeader MicroHeader MicroHeader
MZ0 |20 20 | MZ1 |20 20 |
MicroHeader MicroHeader MicroHeader MicroHeader
|20 20 | MZ2 20 20 | MZ3
MicroHeader MicroHeader /MicroHeader MicroHeader,
- \
mechanical mechanical
FMC HPC Support FMC HPC Support
80 pairs 80 pairs

* Top and bottom MicroHeaders are mainly used for mechanical support.
* Two connectivity modes: support for 1 to 4 MicroZed boards

v PCB design and fabrication done

v’ Testing done
* \Version 2 in progress
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Pictures of FMC Fan-Out Daugthercard v.1

8 MicroHeaders
il |}

4 MicroZeds

R gy

Wil
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FMC Fan-out v.2 with 10GE and PCle

MicroHeader MicroHeader
MicroHeader MicroHeader
|20 20 |
MicroHeader MicroHeader
| 20 20 |
MicroHeader MicroHeader SFP+
SFP+
pcle —2GTX | | 4GTX
SFP+
FMC HPC SEP+

80 pairs, 8GTX

e Support for:
— Four 10Gb SFP+
— 2.5 PCle socket
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Initial Prototype using FMC Fan-Out v.2

4x10Gb SSD
4 GTX
MicroZed 4 |20 20/ Microzed 5
FMC Fan-Out
% o not connected MicroZed 6 5 V2 50| MicroZed 7
N N (no room for daughtercard) .
2 o | 80 pairs, 8 GTX
L O ﬁ |
2| S
o FMC HPC FMC HPC
o 1= 3
3 3|8
Sa | &8 5 Virtex 7
w > E
1 O
E (N
N o| | o Specialist Node
© L e Hitech Global (HTG-V7-PCIE-585)
— o N
< © ©
88
ol 8
(=] )
S| | = )
8 MicroZed boards

8 10Gb SFP+ ports
1-2 PCle x4 SSD
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Picture of testing environment
using FMC Fan-Out v.1

8 MicroZeds
(A9+1GB)
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Hitech Global board (central router)
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Thank you!
Questions?

lakovos Mavroidis
jacob@ics.forth.gr
FORTH-ICS
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