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High-Level Synthesis: A Brief History
+ Early attempts

= Research projects
= 1980s ~ early 1990s
+ Rise and fall of early commercialization
= Tools from major EDA vendors
= 1990s~early 2000s
+ Renewed interests
= Start-ups, followed by major EDA vendors
= Mid 2000 ~ present
+ Wide adoption by the FPGA design community

= Led by Xilinx Vivado HLS (based on AutoESL acquisition in 2011)
= 2012 ~ present



C/C++ to FPGA Synthesis
xPilot ( UCLA) -> AutoPilot (AutoESL) -> Vivado HLS (Xilinx
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AutoPilot Results: Sphere Decoder (from Xilinx)

 Wireless MIMO Sphere

Decoder
— ~4000 lines of C code

— Xilinx Virtex-5 at 225MHz

« Compared to optimized IP

— 11-319% better resource

usage

AutoPilot

Expert
LUTs 32,708 29,060
Registers 44,885 31,000
DSP48s 225 201
BRAMs 128 99
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Xilinx Vivado HLS Results: UDP Network Package
Engine (from Agilent & Xilinx)

¢ Xcell Journal Issue 79 wrow [ [ [ 1©—
» Angilent: Nathan Jachimiec, PhD | _ = .
= Xilinx: Fernando M. Vallina, PhD | S g
+ FSM based design w0 | | |-
.

= Main modules

= ARP and DHCP Flowch In an HDL design, ea.ct.l scenario
S would likely cost an additional day of
igh-Level Synthesis Too

Delivers Optimized _ writing code and modifying the H
- testbench to verify.
= LUTs

Clock Cycles With Vivado HLS these changes took
Vivado HLS versio minutes”




HLS Alone Is Not Enough

m A large design space for software and hardware co-design

m Also need automated source code transformation for HLS
friendly C/C++ code to enable
= Concurrent memory access

= Data reuse and on-chip buffer generation

= Data prefetching



Design Complexity and Optimization Opportunities
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CMOST: Fully Automated Compilation and Mapping Flow

Application: C/C++/OpenCL User Directives
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Optimization Beyond HLS

System-Level
Optimization
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Optimization Beyond HLS

Input Code(C/C++) Polyhedral-Based Data Reuse
l Optimization for Configurable Computing
o Y \ FPGA'13 Best Paper Award
Program Analysis
Loop Structure Loop Improving Polyhedral Code Generation
Optimization Restructuring for High-Level Synthesis CODES-ISSS’14
, w Best Paper Award
Code Generation
\_\ ) Theory and Algorithm for Generalized
- ¥ ~ Memory Partitioning in High-Level
Data Layout Array Partitioning Synthesis, FPGA’14
Optimization Data Reuse
\ - y
[ " Module Selection/ ]\
replication
Inte_r-MOd,l'"e " Communication | Combining Computation with
Optimization _ Optimization | Communication Optimization in System
Module-level | Synthesis for Streaming Applications,
FPGA'14

\ . Scheduling /
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High-level Optimizations

Input Code(C/C++)
4
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Memory Partitioning for Throughput Optimization

m Memory is still a bottleneck
= Data intensive applications: image/video
= Loop unrolling/tiling/pipelining

m Memory partitioning

CLB = CLB CLB o CLB
> >
2 2
CLB cie| | cB CLB
o (vv] (ve)
Cyclic cL8 =) c | | cB £ CLB
. Z Z
Partition | | 1 l
I I I I I I
1 1
| I | |
] @ ] ] @ 1
X X
> >
CLB < CLB CLB < CLB

Bank 1 Bank 2 Bank N
Size ~ K, Bandwidth= N*p

Size = K, Bandwidth = p

N: Partition Factor
p: memory port number

Challenge: generate conflict-free memory partitioning for a given program
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Memory Partitioning for HLS*

. e s 1
m Cyclic partitioning 22
3
= Easy to implement :4
= Very effective in practice =
m Example 2y
= Willi and (3*i+1) go to the same memory A B
bank? al a2
a3 a4
m Theorem 22 2
Vi, a,*i+b,#a,*i+b, mod N — —
A 1 A 2
Mg ng(a1_a2’ N) { (b1_b2) C;clic partitioning

*J. Cong, W. Jiang, B. Liu and Y. Zou. ACM TODAES 2011 (Best Paper Award)
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Memory Partitioning for Multidimensional Arrays

m Flatten-Based Partitioning
= Flatten multidimensional array

= Partition flattened single dimensional array

for (j=0; j<wl; j++)
for (i=0; i<wO; i++)
foo(A[][i], ADI[i-1], A[-1][i ], AG+1][i], AGI[+1D);
¥

foo(A[wO0 *j+i], A[wO *j+i-1], A[w0 *j+i- wO0], A[wO0 *j+i+ wO0], A[w0 *j+i +1]);

Conflict free conditions:

Bank number Bank number distribution
10 N J( 2 N + wO
8
f — N (WO-1) Nt (WO+1)
ﬁ Partition results are related to array sizes!

6 17 18 19 20 21 2 23 24 25 w0 .



Linear-Transformation-Based Partitioning*

m Linear transformation-based approach
= Multidimensional address X linearization: L(X)=«a - x

= Bank mapping: bank(x)= L(x) mod N (Cyclic)
m Example: denoise

A A Bank2
x1 P x1 _-°
R _--" _. Bank3
- ” P -~
- -~ - ”
©O & _.O _-- _-@ .~ _-- Bank4
/,’ -~ /,’ -7 - -~ /,’ e
PRt L T - o Bank0
,z’.,/.," 2Pt Bank1
P - ,’ P - /
,”.’,’O x0 9/” P G x0
> = > color:banks

Vi,j, Ala,*i+b,][c,*j+d;] not conflict with A[a,*i+b,][c,*j+d,]
A — ng((O(] (3.1 _a2)+0(2 (C]_Cz)), N) * (0(] (b]_b2)+0(2 (d]_dz))

*Y. Wang, P. Li, P. Zhang, C. Zhang and J. Cong. DAC 2013
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Access Conflict

for (1 = 1; i <= n; i++)

for(j = 1; j <= min(n,n-i+2); j++)

foo(A[J+1]1[i+l], A[Jj][2*i]);

n+1 O O | O 0O O O O
n O O O |0 O ) O O O O
O O O O O [0 o o o o
2 O O O O 2 o [0 [0 o [0 O O O
1 O O O O 1 o | O |0 © O O O
T2 n ’ 1 >
Iterator domain Array accesses

bank(x0, x1)= (x0+x1)%3
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Conflict Polytope

I of two references is a subset of iteration domain where the two
references are mapped on the same bank

(1<i<n
1< i< for (1 =1; 1 <= n; i++)

) =J=n for(j = 1; jJ <= min(n,n-i+2); j++)
i+j<n+2 foo (A[j+1] [i+1], A[j][2*i]);
((+D+(j+D=(2i+ j)mod3 bank(x0, x1)= (x0+x1)%3

m Insert an extra variable k to linearize it

G+DH)+(+D=Qi+j)+3k o o e

m Fourier-Motzkin Algo. (Fourier 1826, Motzkin1936)
®@ O O
= Test the emptiness of the conflict polytope
= Algorithm complexity: O(m” ) 2 © 0 & 0
* m: number of inequalities (m=4 in the example) 1 O @ O O
* t: number of of variables (t=3 in the example)
* independent of iteration domain size n 1T 2 n

Conflict polytope
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Generalized Memory Partitioning (GIVP)

. m Complexity independent of

Memory Partitioning - = Sizes of iteration domain
Alternatives — .
= Sizes of array

' m Complexity related to
Build Conflict Polytopes = Dimensions of iteration domain and
for all ref pairs array

* Inreal case <=3

= Number of References
* |nreal case <=100

All
Polytopes

Empty? = Number of memory partitioning

alternatives < number of references

Valid memory partitioning 19



Experimental Results for Denoise
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Optimization Beyond HLS

Input Code(C/C++)
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Stencil Applications

m An important pattern in many application domains: image processing, constituent
kernels in multigrid methods, partial differential equation solvers, etc

for (j=1;j<1023; j++)
for (i=1;i<767; i++)

{
0 j 1024 . g_[i][i]_=_fI(U[j]!i]t u[j-1][il,
O @O —-O---O > ulj+1][il, u[jlfi-11, u[j]l[i+1]);

B 1 3 }

88 @ -O-0--0-O>
ufiki-1- wiHjF whb+ - moooo Do .

O @O0 -~0-0-0O>, _

S i 1 A e - Two observations:

J <OOOOOOO>  Each data accessed for multiple time as
N N ™otV Ve -\s.time goes > data reuse via on-chip memory
<OOOOOOO > O Multiple data accesses at each time point
~-O---0---O--0O---0---O---O-> -> partitioning of on-chip memory
R S L E L L L P e e LR e e PR R g
~-0--0---0--O--- 000>

768 v
22



Microarchitecture for Stencil Applications (DAC’'14)

m Motivation

= Save accelerator designers from struggling with memory access optimization

= We give the optimal solution in our architecture for any stencil access pattern!

Microarchitecture for Stencil Accesses of Data

Memory Subsystem for Data Array u

u[0..768][0..1023]

| OC (=]

Managers
Interconnects L____——

Data Reuse
Buffers
Count on us L —
(generated by this work)
s —
u[i-1][j] J uli][j-1] J

ufi][j] J uli][j+1] y ulitil |

User focuses on
(generated by HLS)

Computation Kernel

gli][j] l
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Our Microarchitecture w/ Non-Uniform Buffers

m Each data reuse buffer has a different size

m Use distributed controllers based on data streaming

u[0..768][0..1023] ‘

Memory System for Stencil Accesses to Array uin “DENOISE”

= data path splitter
storage space for data reuse

_— / \\

sO

o EHD D] o)

ufi+1]{j]

FIFO 1 FIFO 2

ufi][j+1] uli][jl ulif[j-1] ufi-1]jl

v

v v v v
towards computation kernel 24




Features of Our Microarchitecture

m Full design space = can always achieve the optimal design point

= minimum reuse buffer size

= minimum # of reuse buffer banks

m Simple logic in each distributed component works together to achieve automatic

filling of reuse buffers

= Automatic adjustment of reuse data amount

€D, i€D, 0 J 1024
input counter output counter " 'O " O"'O"'O’ 'O >
- 1= L L it
: ; ~O--@--O-0---0--O-->
outpus stream _<_;___ ‘i{g_{}]— -6______6 ______ 6_ ) _; _______
inputstream S ! ' b -1} - T T
L gm0 6 00
data switch P S —
--O---O---O->
P
O FIFO_ o ) O:) FIFO_ 3 (OO>
FIFO 1 FIFO 2 >0
768 VY 25



Experiments

m Real-life stencil computation kernels with non-rectangular stencil windows

____________ o
= BUCUBIC (2D) from bicubic interpolation process © ® O o T

= SOBEL (2D) from Sobel edge detection algorithm

Original Achieved
Throughput | Throughput

Total Buffer Size

GMP NUB

DENOISE 1/5 1 20350 2048
RICIAN 1/4 1 2030 2048
SOBEL 119 1 2054 2050
BICUBIC 1/4 1 2030 2048
DENOISE_3D 117 1 2240 2048
SEGMENTATION 119 1 2630 2112

Z0



Experiments (Cont’ d)

G

m Synthesize for Xilinx Virtex7 FP C7VX485T via ISE 14.2

)

I N Y
GMP 5
DENOISE
NUB 2 636
GMP 4 582
RICIAN
NUB 2 544
GMP 9 1937
SOBEL
NUB 2 1088
GMP 4 989
BICUBIC
NUB 2 493
GMP 7 980
DENOISE_3D
NUB 2 859
GMP 20 7533
SEGMENTATION
NUB 2 2231

Avg Savings 66% 25%

O O O O O O O o o o o o



Optimization Beyond HLS

Input Code(C/C++)
4
4 Program Analysis h
Loop Structure - Loop <
Optimization ___Restructuring
Code Generation
\_\ J J
v
( ™
Data Layout [ Array Partitioning ]
Optimization [ Data Reuse ]
\ - y,
/ [ Module Selection/ ]\
L replication
Inter-Module . ——————
Optimization Communication
. Optimization |
[ Module-level |

\ . Scheduling J/

Combining Computation with
Communication Optimization in
System Synthesis for Streaming
Applications, FPGA'14
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Motivation

Tile size: 32x32 tile 3 > tiled
Image: 64x64, 4 tiles tile 2 > tile2
tile 1 ' > tile 1
tile 0 | > tile0
gradient rician

= Which implementation to use for each module?

* Memory partitioned v.s. Memory non-partitioned

_-EI“-

non-partitioned gradient 128 2511 2125
partitioned gradient 176 56 1147 1262
partitioned rician 128 22 4692 3991

non-partitioned rician 176 88 14475 15537
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Motivation

Tile size: 32x32 tile 3 >  ftile3
Image: 64x64, 4 tiles tile 2 > tile2
tile 1 > tile1
tile 0 >  tile0
gradient rician

= How many number of replicas?

m Scheduling and Communication cost (number of tiles in the communication

channel)?
t.Itik; 3 <\>> t.Itilc; 3 t.ItiI: 3 /\/‘ t'|ti|: 3
ile e ile ile
«— ! «— O
tile 1 > tile1 tile 1 tile 1
tile 0 <\> tile 0 tile 0 /\/‘ tile 0

scheduling 0 >1 tile scheduling 0 -2 tiles

30



System-Level Synthesis in HLS for Streaming
Applications

e
Goal of this work: understand and explore the design

space of mapping streaming applications to FPGAs
Mowerr 12

| uatd
System = ?
- > Module Module
Selection Replication
Communication .
4 Optimization Scheduling )

[ impl_A | impl B |

1 1
150 200

—Producer/Consumer data rate
Q‘natching problem

modules?

What is the minimum buffer size? |
How to schedule all the ~ %

/
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Proposed System Synthesis Framework

input

output

System SDF-based
Throughput Application
Requirement Modeling

\ 4

\ 4

Implementation
Library

\ 4

Coupled Computation and Communication

Optimizations
~ — A4 ¢
Selected Number of Buffer Size Scheduling
Implementation Replica Results
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Formulation (1/2)

m Derive a scheduling graph
= Associate each node with a time variable, denoting the starting
time of the node

= Scheduling graph: delineates all the scheduling constraints

* Module latency, Module replication, System throughput requirement, Buffer
constraints

Module latency constraints
et,: execution time of task a
et,: execution time of task b

Buffer Constraints
If buffer size betweenaand b is 2,
then add edges: b 2> a2 b! 2> a3

33



Formulation (2/2)

m Associate each node with a scheduling variable
= t(b0) - t(a°%) >=et,
= t(a?) - t(b?) >= et,

» Scheduling variables are integer variables

m Schedulability checking problem is a System of Difference
Constraints (SDC) problem

= It can be solved optimally in polynomial time by linear
programming relaxation

= And the solution is guaranteed to be integers
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Exploration

Scheduling Graph

Find critical paths

~ =~

e Find the length of longest
path (maxL)

e In this example, maxL =8

N— e’

~

—

e Find all the paths whose

e or more aggressively,

S

lengths are maxL,

(1-€)*maxL

12

Module Improvement

—

—

Associate each edge a new
weight — the area penalty to
remove this edge from the
critical paths

Find @ minimum cut on the
graph

™

_/
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Streaming Synthesis (ST-Syn)

m Formulation - Schedulability checking
= System of Difference Constraint Problem

m Exploration - Identify critical path, module/buffer improvement
= Find e-critical paths in the scheduling graph
= Minimum cut problem

m All can be solved by linear programming relaxation

Start from the impl with the smallest
logic, minimum buffer size

)

Schedulability Zlenufy e-Critical Paths
Checki
o Module/Buffer Size Improvement
: A
Fail

Success “i
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Experiments on Denoise
m Our methodology: ST-Syn

= computation & communication co-optimization

m Separate:
= separate computation opt. + communication opt.

m 2> Communication and computation should be considered in a unified
framework

16

A\~ 4

wn 14 i
S 12
% 10
©
N8 .
S 6 m Logic
= 4 . ® BRAM

2

0

ST-Syn |Separate ST-Syn |Separate ST-Syn |Separate
100 200 400

Performance (fps)
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Ongoing Work:
Enabling Customized Computing in Data Centers

¢ Big Data Era = Massive Data-Level Parallelism = Supercomputer in a Rack
¢ A rack with tens of FPGA boards connected by heterogeneous interconnects

+ Task/data mapping for minimum traffic, highest throughput, energy efficiency, etc

¥

Ethernet
Switch

CPU/FPGA H
CPUIFPGA
CPUIFPGA §

Lix () sount ~ chabent

CPU/FPGA §

| 3
T

y

Y

- -

Ethernet Cable

| cruresh
[ m

CPU + FPGAs in 2U

rack picture a(iopted fuem Supelnmlo@l
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Concluding Remarks
m High-level synthesis (HLS) is gaining wider adoption
= |Input C/C++ code may have a significant impact on HLS results

= CMOST: Automated source-code level transformation and
optimization techniques for HLS and customized computing

m Ongoing work: large-scale customized computing in data centers

= Automated accelerator scheduling and management is key
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