

Riding the perfect storm

John Goodacre

MPSoC'14

ARM

Low-Power Leadership

Director Technology and Systems ARM Ltd Cambridge

Abstract

EUROSERVER is a European commission FP7 part-funded project which is combining the technology trends of nanotechnology 3D integration, low-power SoC processor integration and the impossible requirements from next generation compute to investigate and build a solution for scalable, cost effective and flexible ARM-based micro-server system architecture suitable across multiple markets. This talk will introduce the vision and the goals for the project and the approach the consortium is taking to realize a ground breaking solution out of this perfect storm.

The Perfect Storm

- The ability to inexpensively extract heat from chips of any size maxed out.
- The ability to lower voltages with decreasing feature size slowed dramatically.
- The design complexity of single core microprocessors hits point of diminishing returns where more transistors could add little to the core's per cycle performance.
- We are approaching a limit on economically viable off-chip interconnect with the available technologies because of electrical issues.
- The cost of increasing wire-based signalling rates begins to grow considerably, especially in power and complexity of the interface circuits.
- The economics of memory chip production stops the growth in size of memory die.
- The electrical and power issues associated with driving off of a memory chip at high rates through inexpensive commodity packaging (such as found on commodity DIMMs) to a microprocessor chip more than a few inches away reached a point where further improvements become fairly difficult and/or expensive.

SANDIA REPORT

SAND2013-9229 Unlimited Release Printed October 2013

EUROSERVER Approach: Next Generation Compute

Market

- Competition is good "one size doesn't fit all" <u>Make it flexible</u>
- Critical mass is good " a problem shared" Keep it compatible
- Innovation is expensive and time consuming....
 - Exploiting it even more so <u>Collaborate appropriately</u>

Technology

- Towards the end of the road...
 - Utilize and extend the advancements in <u>nanotechnology integration</u>
- Increasingly high costs, NRE, Recurring
 - Make the best <u>economically accessible</u> SoC, 3DIC, FDSOI/FINFET
- Use <u>"Embedded" processors</u> now feature capable for new markets

The Common Requirement

More for the same, more for less, specialized, specific, accepted by the <u>critical mass</u> software community

Headline Objectives

- EUROSERVER will design and prototype technology, architecture, and systems software for the next generation of "Micro-Servers" to be used in building data centers.
- We will progress on the current state of the art in the following domains:
 - **Reduced Energy consumption** by: (i) using ARM (64-bit) cores, which are the world-leading low-power processors, (ii) drastically reducing the core-to-memory distance by using novel silicon interposer packaging technology, and (iii) improving on the "energy proportionality"
 - Reduced Cost to build and operate each microserver, owing to (i) improved manufacturing yield when multiple smaller "chiplets" are placed on a larger silicon interposer(2.5D), and (ii) reduced physical volume of the packaged interposer module and (iii) and energy efficient semiconductor process (FDSOI)
 - **Better Software efficiency**: Next Generation system SW that (i) manages the resources in a server that consists of multiple coherence-islands, and (ii) isolates and protects the multiple workloads from each other when they use the shared server resources of I/O, storage, memory, and interconnects.

- Euroserver redesigns the entreprise server
 - Lower cost through Improved Chiplet Yielding and Flexible System Integration
 - Energy efficiency : low-power 64 bit processor, "Everything local",
 - Software Mutualization and sharing of I/O and common resources

EUROSERVER Applications

Application Area

- Data Centres & Cloud
- Telecom infrastructures
- High-end Embedded

Typical workloads

- Web-server hosting (LAMP/WAMP)
- Distributed databases (HADOOP)
- OLAP, OLTP workloads Traditional, relational databases (MySQL)
- Network communications
- Vehicle on-board computer
- Automatic vehicle location tracking
- Advanced security and surveillance

- I. Next Generation Compute System Architecture
 - Scale-out and flexible heterogeneous compute
 - Define the Unimem memory model of a virtual-mappable shared GAS
- 2. Nanoscale, silicon-on-silicon 3D integration and IP
 - "Chiplet" concept in 3DIC integration and test
 - Heterogeneous silicon interface bridging
 - HMC "memory compressing" controller
- 3. Software Architecture and Frameworks
 - Utilize the "Unimem" memory hierarchy
 - Resource sharing and system wide reallocation
- 4. Applicability of Euroserver solution
 - a) Device PCB Realization: Development System
 - b) Embedded Mircoservers: Wireless Basestation
 - c) Scale-out Servers: Cloud Services

Focus Area 1 / 4 System and Memory Architecture

System Architecture

Multiple independent nodes

- Heterogeneous IO and compute within and between nodes
- All share access to a common GAS
- Provide consistent/coherent access to "all" of its local memory space

Topology Agnostic

- Address based routing across GAS
- Hierarchical address ownership
- Globally aware virtualization layer
 - Sharing common IO/Peripherals
 - System-wide power management

"Unimem" Unified Memory

- Multiple coherent Islands
 - Heterogeneous Compute
 - Coherent Local Memory
 - Essential IO and Peripherals

Access to shared GAS

- Additional PA
- Shared IO and Peripheral
- Memory Model
 - Any node can locally VA map any GAS location
 - Single node can cache VA map of shared GAS

Focus Area 2/5: Nanoscale Integration

Modeling Device Cost Impact

Die Size (sm*2)

Defect Density Madel Predicts

ercent Yield vs Die Size for a Specified De

Consider a traditional 300mm2 2D-SoC

Currently yielding means \$400-800 per device In < 20nm, that cost nearly doubles!

Both die are smaller so yield higher and hence ~20x lower cost, even when adding *today*'s 3D cost

Focus Area 3/5: Software Architecture

Access anything, anywhere

Architecture enables duplicating only the resources the app needs

Constructed using chiplets then direct virtually map remote memory and devices

| 14

Focus Area 4/4 part-a: Demonstration of a Micro-server

- Tentative specs
 - Form factor: standard ComExpress or Custom
 - Size: ~ 8 x 12 cm
 - Components:
 - I Euroserver Device (compute node)
 - Single board-to-carrier connector
 - Local storage, local memory
 - Network Fabric Interconnect
 - Board management and control logic and sensors
 - Local test, debug and peripherals to consider
 - The Micro-server board will populate (in different number) both the Embedded Server and the Enterprise Server

Key Focus 4/4 part-b: Demo in an Embedded Server

EURO SERVER

- Tentative specs
 - Target form factor: Eurotech Mounted Mobile Computer
 - Size: 13 x 25 x 8 cm
 - Prototype targeted for rugged sealed enclosure and extended temperature range
 - Modular system design
 - Shared design for micro-server board and carrier board with Enterprise Server version
 - Up to 2 micro-server slots
 - Support for optional general purpose card (using 1 slot) for specific function or peripheral
 - 9 to 36 Vdc in; 30W max;
 - Passive conduction cooling
 - Support for Backup battery pack to investigate

Key focus 4/4 part-c: Demo as an Enterprise Server

- Tentative Specs:
 - Compatible form factor with standard server rack design
 - Minimum density design
 - I" node pitch (16 nodes per rack width)
 - It enables 64 micro-server cards (16 x 4) in a standard cabinet and 12 kW compute power in a 42U rack
 - Carrier board design shared with Embedded Server version
 - Population options: any combination of micro-server node cards and general purpose cards (each card uses one slot)
 - Support for multiple thermal and cooling options

Vision for the Future

Target Different Application Area - HPC:

- Realize the next level of system architecture for Next Generation Compute. (adding stacked dram and integrated IO)
- Apply the System and Memory Architecture along with more advanced Nanotechnology and Software Framework and Runtimes
- Increased "compute-chiplet" heterogeneity
 - Core selection, combinations and integration granularity
 - Semantically Aware, Generic Runtime Support
- Investigate application of Photonic Technology
 - On silicon for active interposer's interconnect
 - On substraight for interconnection of Silicon in MCM
 - Extending across PCB