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Outline 

 

• Se Hun Kim, Marilyn Wolf, Saibal Mukophdhyay: Error-
aware image compression. 

– Perceptual models of image quality. 

– Error models for subthreshold logic. 

– The system-level challenge. 

– Error-aware architectures. 
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Problem Definition 

• Error Tolerance of DSP applications  

– Limit of human perceptual system 

– Relax 100% correctness 

– Acceptable quality 

– Accuracy (Quality)-energy tradeoff 

 

 

• Research Goal 

– Low power/energy consumption without significant 

quality degradation  
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Input dependence on Energy Savings 

• Motivation 

 

 

 

 

 

 

 

 

 

• Two reasons 

1. The natural disparity in error tolerance due to the 
characteristics of the human visual system  

2. Error rate depends on image types under aggressive voltage 
scaling 

* MSSIM : Mean Structural SIMilarity – a perceptual image quality assessment 
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Natural disparity in error tolerance 

• Several aspects of human visual system 

– Contrast masking, Texture masking, Frequency masking 

– Discrimination threshold depends on these three 

 Images with higher contrast, texture, and frequency  

  tolerate more error signals 

 

Comparison of two images with same salt & pepper error 
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frequency than image 3 and 4 
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Structural Similarity Index Measurement 

(SSIM) 

Fig. 2. Structural Similarity (SSIM) Measurement System [6] 

6 
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Delay Oriented Error Analysis 

• Input dependent delay estimation is required for 

accurate delay estimation 

• Static path delay based estimation 

– Based on only current input and carry propagation 

• Transition delay based estimation 

– Based on previous and current input and transition 

Ripple carry adder 
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Delay Oriented Error Analysis 

• Comparison between two 
delay estimation methods 

 

 

 

 

 

 

 

• The behavior of a full adder 

– consecutive 10 or 01  

 long delay propagation 
path  
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Input analysis 

• Characterizing the relationship between input and error 

– Three cases to cause a long delay propagation path   

 

 

 

 
 

1. sign(A) ≠ sign(B) & mag. of A and B is small 

2. sign(A) ≠ sign(B) & mag. of A and B is large and similar 

3. sign(A) = sign(B) & mag. diff. of A & B is very large  

    00000001 (+1)

+ 11111110 (-2)

11111111 (-1)

λ

  10111111 (-65)

+ 01000011 (+67)

 00000010 (+2)

λ

00000001 (+1)

+ 01111111 (+127)

10000000 (+128)

λ

Case 1 Case 2 Case 3



10 

Input analysis 

• Case 1 is dominant 

• Input image analysis 

– Image type 1: blurred 

– Image type 2: sharpened, 

 histogram equalized 
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 Experimental Results and Discussion 

• Difference in voltage scalability (energy savings) among 

different image types for a given quality requirement 
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System-level Analysis 

• Impact of aggressive voltage scaling on image compression 

– Degradation in output quality 

– Reduction in compression ratio  Increase output file size  

• Run-length of zero 

• Average codeword length  

 Increase in energy consumption in other subsystems 
e.g., Memory for storing the output images 
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Pixel and Coefficient Truncation 

• Directly reduces delay  Error rate reduction 

• Low order bit truncation Minimize quality degradation 
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Pixel and Coefficient Truncation 

• Energy savings  

– Switching activity reduction 

– Supply voltage reduction 

 

 

 

• Disabling the memory cells  

 Additional energy savings 

  Trivial implementation cost 

 (6% area increase) 
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Results 
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Results 
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Conclusions 

• Trade-offs need to be evaluated at the system level. 

• Subthreshold error modeling is a sequential problem, 

not a combinational one. 

• Algorithms and platforms can take advantage of 

perceptual properties to optimize other design criteria. 


