

Accuracy-Aware Computing: Opportunities and Pitfalls

Marilyn Wolf School of ECE

- Se Hun Kim, Marilyn Wolf, Saibal Mukophdhyay: Erroraware image compression.
 - Perceptual models of image quality.
 - Error models for subthreshold logic.
 - The system-level challenge.
 - Error-aware architectures.

Problem Definition

- Error Tolerance of DSP applications
 - Limit of human perceptual system
 - Relax 100% correctness
 - Acceptable quality
 - Accuracy (Quality)-energy tradeoff

- Research Goal
 - Low power/energy consumption without significant quality degradation

Input dependence on Energy Savings

Motivation

Two reasons

- 1. The natural disparity in error tolerance due to the characteristics of the human visual system
- 2. Error rate depends on image types under aggressive voltage scaling

Georgialnstitute

of Technology

Natural disparity in error tolerance

- Several aspects of human visual system
 - Contrast masking, Texture masking, Frequency masking
 - Discrimination threshold depends on these three
 - Images with higher contrast, texture, and frequency tolerate more error signals

Comparison of two images with same salt & pepper error

SRAM simulation result under aggressive voltage scaling, images 1 and 2 have higher contrast, texture, and frequency than image 3 and 4

Structural Similarity Index Measurement (SSIM)

arity (SSIM) Measurement System [6]

6

Delay Oriented Error Analysis

- Input dependent delay estimation is required for accurate delay estimation
- Static path delay based estimation
 - Based on only current input and carry propagation
- Transition delay based estimation
 - Based on previous and current input and transition

Georgialnstitut of Technology

Delay Oriented Error Analysis

Comparison between two delay estimation methods

- A_{n-1} B_{n-1} **B**₁ B_0 Bn A₀ **A**_n FA FA FA FA **Out**_n Out_{n-1} Out₁ Out₀ FA Cin
- The behavior of a full adder
 consecutive 10 or 01
 - → long delay propagation path

Georgialnstitute of Technology

Input analysis

Characterizing the relationship between input and error
Three cases to cause a long delay propagation path

sign(A) ≠ sign(B) & mag. of A and B is small
sign(A) ≠ sign(B) & mag. of A and B is large and similar
sign(A) = sign(B) & mag. diff. of A & B is very large

Georgialnstitute of Technology

Input analysis

- Case 1 is dominant
- Input image analysis
 - Image type 1: blurred
 - Image type 2: sharpened, histogram equalized

Experimental Results and Discussion

 Difference in voltage scalability (energy savings) among different image types for a given quality requirement

System-level Analysis

- Impact of aggressive voltage scaling on image compression
 - Degradation in output quality
 - Reduction in compression ratio \rightarrow Increase output file size
 - Run-length of zero
 - Average codeword length
- Increase in energy consumption in other subsystems e.g., Memory for storing the output images

Pixel and Coefficient Truncation

- Directly reduces delay → Error rate reduction
- Low order bit truncation → Minimize quality degradation

Pixel and Coefficient Truncation

- Energy savings
 - Switching activity reduction
 - Supply voltage reduction

- Disabling the memory cells
 - Additional energy savings
 - Trivial implementation cost (6% area increase)

Georgialnstitut of Technology

Results

(1) Blind Voltage Scaling
(2) With Fixed Truncation (4LOBs)
* (3) With Adaptive Truncation

Original

(2), (3)

Results

Conclusions

- Trade-offs need to be evaluated at the system level.
- Subthreshold error modeling is a sequential problem, not a combinational one.
- Algorithms and platforms can take advantage of perceptual properties to optimize other design criteria.