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Se Hun Kim, Marilyn Wolf, Saibal Mukophdhyay: Error-
aware image compression.

Perceptual models of image quality.
Error models for subthreshold logic.
The system-level challenge.
Error-aware architectures.
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Problem Definition

Error Tolerance of DSP applications _—
Limit of human perceptual system
Relax 100% correctness T g
Acceptable quality
Accuracy (Quality)-energy tradeoff

Power/Energy

Research Goal
Low power/energy consumption without significant
guality degradation
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Input dependence on Energy Savings

Motivation

JPEG
compression

Aggressive
Voltage
Scaling

on
DCT

Two reasons

The natural disparity in error tolerance due to the
characteristics of the human visual system

Error rate depends on image types under aggressive voltage
scaling
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* MSSIM : Mean Structural SIMilarity — a perceptual image quality assessment



Natural disparity in error tolerance

Several aspects of human visual system
Contrast masking, Texture masking, Frequency masking
Discrimination threshold depends on these three

=» Images with higher contrast, texture, and frequency
tolerate more error signals
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SRAM simulation result under aggressive voltage scaling,

Comparison of two images with same salt & pepper error images 1 and 2 have higher contrast, texture, and
frequency than image 3 and 4
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Structural Similarity Index Measurement

(SSIM)
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Delay Oriented Error Analysis

Input dependent delay estimation is required for
accurate delay estimation

Static path delay based estimation
Based on only current input and carry propagation

Transition delay based estimation
Based on previous and current input and transition
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Delay Oriented Error Analysis

B Static path delay estimation
B Transition based delay estimation
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Comparison between two
delay estimation methods

The behavior of a full adder
consecutive 10 or 01

-> long delay propagation
path
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Input analysis

Characterizing the relationship between input and error
Three cases to cause a long delay propagation path

Case 1 Case 2 Case 3
00000001 (+1) 10111111 (-65) 00000001 (+1)
+ 11111110 (-2) + 01000011 (+67) + 01111111 (+127)
11111111 (-1) 00000010 (+2) 10000000 (+128)
K 7 % w W

1. sign(A) # sign(B) & mag. of A and B is small
2. sign(A) # sign(B) & mag. of A and B is large and similar

3. sign(A) = sign(B) & mag. diff. of A & B is very large

Georgialhstitute
off Techneleogy



Input analysis

Case 1 i1s dominant

Input image analysis
Image type 1: blurred 16000 +——F 1 {m case 2
16000 | |[Ocasel
Image type 2: sharpened, _
histogram equalized g
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Experimental Results and Discussion
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Voltage Scaling Factor

Difference in voltage scalability (energy savings) among
different image types for a given quality requirement
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System-level Analysis
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Impact of aggressive voltage scaling on image compression
Degradation in output quality

Reduction in compression ratio = Increase output file size
Run-length of zero
Average codeword length

=» Increase in energy consumption in other subsystems
e.g., Memory for storing the output images
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Pixel and Coefficient Truncation
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Directly reduces delay - Error rate reduction
Low order bit truncation—> Minimize quality degradation
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Pixel and Coefficient Truncation
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Results

—++— (1) Blind Voltage Scaling
—<— (2) With Fixed Truncation (4LOBs)
—4+—— (3) With Adaptive Truncation
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Results
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Conclusions

Trade-offs need to be evaluated at the system level.

Subthreshold error modeling is a sequential problem,
not a combinational one.

Algorithms and platforms can take advantage of
perceptual properties to optimize other design criteria.
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