
Bluespec BSV, the choice for CPU and SoC designers

Rishiyur Nikhil
CTO, Bluespec

MPSoC, July 2014

Relais de Margaux, France

© Bluespec, Inc., 2014

www.bluespec.com

Abstract
The BSV language is uniquely suited for CPU and SoC design, and is
being used by many CPU/SoC designers for modeling and
implementation. We describe the reasons for this, and several examples.

© Bluespec, Inc., 2014 2

Range of CPU/SoC activities where BSV is used

Refinement CPU models
(incl. caches, MMUs)

SoC models
(interconnects, memory,

peripherals, other IP)

CPU implementations

SoC implementations

time

Debugging
Performance analysis and validation

Software/firmware development and testing

Activities throughout the design period

Execution on FPGAs
(even for eventual ASIC targets)

Requirements for source language:
•  Natural expression of architectures, from models to implementation (high-level)
•  Continuum from high-level to implementation-level (no disruptive changes)
•  Full synthesizability (to FPGAs), from models to implementations

Why people use BSV

Ideally, with actual SW
loads (full OS, apps, …)

© Bluespec, Inc., 2014 3

What’s so special about BSV?

•  Fundamentally parallel/concurrent language, no sequential “base language”

•  Architectural Predictability and Controllability
•  Architectures (like algorithms) are the creative part of design; cannot be entrusted to a tool!

•  BSV “Rules” are a natural abstraction of hardware behavior
•  Concurrent state machines on shared resources
•  Rules are composable, scalable, atomic state transitions, in object-oriented style

•  BSV “Rules” feed naturally into Formal Verification
•  Rules are the basic logic model in many formal verification systems

•  Most powerful data type system in any language for synthesizable hardware design
•  User-defined types, functional types, polymorphism, typeclasses (user-defined overloading)
•  Custom hardware bit-representations

•  Most powerful static elaboration system in any language for synthesizable hardware design
•  Higher-order functions
•  Full orthogonality è very powerful parameterization

•  Can parameterize {functions, modules, rules, actions} by {functions, modules, rules, actions}

If you’d like more technical
detail, see code examples,
see a demo, … please
catch me off-line.

© Bluespec, Inc., 2014 4

What’s so special about BSV (contd.)?

•  Fully synthesizable (no concept of “synthesizable subset”)
•  All high-level features of the language can be used in synthesizable code

•  Both computation-oriented and control-oriented designs handled very well
•  Computation: image, video, wireless, crypto, …

•  Highly complex pipelines, pipeline control, customized memory systems
•  Control: CPUs, caches, MMUs, DMAs, interconnects, memory controllers, high-

speed I/O, network processing, …

If you’d like more technical
detail, see code examples,
see a demo, … please
catch me off-line.

© Bluespec, Inc., 2014 5

H.264 Boundary Strength; H.264+VP8 Deblocking

Customer Reference
(RTL)

1X 2X
(estimate)

4Kx2K 1080p

VP8 H.
264 BS

All the designs had to
support a video rate of
30 frames/second

Vendor A
(HLS)

Vendor B
(ASIP)

Vendor C
(ASIP)

ONLY

0.55X 0.8X 1.6X

BSV

0.47X
(actual)

0.81X
(actual)

BSV

0.18X 0.33X

Supported
codecs

Supported
resolutions

Relative
area

VP8

H.
264

BS

H.264 Deblocking Filter
H.264 Boundary Strength
VP8 Deblocking Filter

VP8

1080p 1080p 1080p Other
vendors

Optimize for 1080p
only (not 4Kx2K)

VP8 H.
264 BS VP8

4Kx2K

Bluespec

BSV VP8 4Kx2K
smaller than
others’ 1080p

BSV VP8+BS+H.264
smaller than others’
VP8 alone

VP8

1080p

VP8 H.
264 BS

This change took
< 30 minutes.

It’s all in the
pipelined memory
architecture; BSV
is great for this!

© Bluespec, Inc., 2014 6

Examples of who’s using BSV for CPU/SoC design
Organization Type of model(s) Comment on

FPGA?
OS?

Bluespec, Inc.

ARM (9, Cortex, …) Synthesizable ISS model Yes Linux

RISC-V Synthesizable ISS model and
pipeline implementation

Yes Linux

Intel [proprietary] Cycle-accurate CPU pipeline
models

Yes Yes

IBM Next-gen POWER Components Yes

MIT/IBM PowerPC Cycle-accurate CPU pipeline
models

Yes Linux

MIT 110-core single-chip
SMP

Exploring hardware-assisted
thread migration

ASIC Apps

U.of Cambridge (UK)
and SRI (CA)

MIPS + security
enhancements

With formal verification of
security enhancements

Yes FreeBSD

U.of Pennsylvania Clean-slate design for
security and formal

proofs of correctness

With complete formal
verification

Yes Planned

IIT Madras (Chennai)
ANURAG FPGA CPU implementation Yes ?

MIPS/RISC-V Pipelined implementation Yes ?

Carnegie-Mellon
University

Itanium CPU model, 4000x faster than
Modelsim

Yes No

16 CPU UltraSparc III
Sunfire 3800 Server

Synthesizable hyper-threaded
ISS model

Yes Solaris 8, Oracle 10g
Enterprise DB Server

U.of Texas (Austin) x86 Cycle-accurate CPU pipeline
models

Yes Windows and Linux

U.of Lund (Sweden) JVM Direct HW exec of JVM
bytecodes, garbage collection

Yes

© Bluespec, Inc., 2014 7

Examples of who’s using BSV for CPU/SoC design

Hardware-level thread migration 
in a 110-core shared-memory

multiprocessor"

"
Mieszko Lis Keun Sup Shim"

Brandon Cho "Ilia Lebedev"
Srinivas Devadas" 1!

Hot Chips 2013

© Bluespec, Inc., 2014 8

Examples of who’s using BSV for CPU/SoC design

Intl. Symp. on Computer Architecture (ISCA) 2014

•  Implementation of MIPS with extensions for fine-grain (object-granularity)
protection and access controls (primarily U.Cambridge UK)

•  Formal verification of security properties (primarily SRI)

© Bluespec, Inc., 2014

BSV pipelined Implementation

9

Synthesizable ISS enables Tandem Verification

BSV ISS

Archite-
ctural State

ISS
behavior

Imported C ISS
Archite-

ctural State
ISS

behavior

Bootstrap: Verify ISS in simulation

•  For each instruction executed by the BSV ISS, send “deltas” of arch. state to

C ISS, which also executes the instruction and verifies deltas.
•  Immediately identifies divergent state!
•  Cheap: per-instruction deltas are quite small (couple of words of data).
•  This verifies the BSV ISS
•  We do this for full OS boot and app runs, not just synthetic test programs.

•  (Some tricky details about non-determinism: interrupts, cycle counts, …)

Use and re-use: BSV ISS is synthesized to FPGA, and
used for tandem verification of actual CPU
implementations (pipelined)

•  Same game, at next level: BSV ISS verifies BSV complex

pipelined implementation
•  Fast: MHz speeds, everything is on FPGA

•  Many orders of magnitude faster than simulation
•  Verify full OS boot, app execution, driver execution, …
•  Re-use synthesizable ISS for verifying multiple pipelined

implementations

BSV ISS

Archite-
ctural State

ISS
behavior

(Empty)

Fetch Decode Commit

Synthesize

Exec

Δs

Δs
On FPGA

In simulation

© Bluespec, Inc., 2014 10

RISC-V (basis for Bluespec’s Customizable CPU and SoC Kit)

Bluespec offers a family of CPUs based on the RISC-V ISA (Instruction Set Architecture)

•  5th gen RISC ISA from Univ. of California, Berkeley
•  History: RISC-I (1981), RISC-II (1983), SOAR (1984), SPUR (1989) and various other specialized architectures

•  Open ISA (no royalties), open software tools and systems (BSD license)
•  Core spec: 32 bit and 64 bit integer instructions

www.riscv.org
Extensible, customizable ISA
•  Optional 16-bit instruction coding for small

instruction footprint
•  Standard extensions for integer multiply/

divide, floating point, atomic memory
operations

•  Standardized extension mechanism (vector,
SIMD, Quad-precision floating point, bit
manipulation, …)

Software (open source, BSD license, on github)
•  GCC tools (gcc, objdump, gas
•  GDB
•  LLVM
•  Linux

© Bluespec, Inc., 2014 11

Bluespec’s Customizable CPU and SoC Kit

Written entirely in BSV
•  Architected for easy composition and extension, exploiting

BSV features for this
•  Open source community: alternative RISC-V

implementations, fabrics, I/O blocks, IP blocks, accelerators,
…

Software:
•  Linux, BusyBox, …
•  Tool chain: gcc and Gnu tools, LLVM, gdb, soft-float, …

Coming:
•  Multi-core, with coherent caches

If you’d like more technical
detail, see code examples,
see a demo, etc., please
catch me off-line.

SoC

Fabric

Accelerators, IP blocks

Flute
ICache

DCache

gdb, console
interfaces

Memory client
interface

M

M
M

S

S

verification
interface

BluROCS

6+ stage pipelined imple-
mentation of RISC-V

Synthesizable RISC-V ISS,
for tandem verification

Interconnect fabric:

•  Parameterized number of
master (M) and slave (S)
interfaces

•  Interfaces: Bluespec’s
“TLM3”, AMBA transactors
(AXI4, AHB, …)

•  Crossbar or multi-stage

Host connection to GDB
and console (over PCIe
when using FPGA)

DMA, AES, I/O, …

© Bluespec, Inc., 2014 12

Summary

•  The BSV language is uniquely suited for CPU and SoC design
•  High level, natural expression of hardware structure and behavior
•  Powerful abstraction while remaining fully synthesizable
•  Synthesizable (even models, for fast FPGA execution)
•  From models to implementations

•  Many organizations are using BSV for CPU/SoC design

•  A RISC-V CPU and SoC kit is available from Bluespec
•  Lowers the barrier to entry in the SoC space because:

•  Open ISA, open source IP, open source software, …
•  Composable and extensible, due to unique BSV properties

