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Abstract
The BSV language is uniquely suited for CPU and SoC design, and is
being used by many CPU/SoC designers for modeling and
implementation. We describe the reasons for this, and several examples.
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Range of CPU/SoC activities where BSV is used
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Activities throughout the design period

Debugging

Performance analysis and validation
Software/firmware development and testing

}

Requirements for source language:
» Natural expression of architectures, from models to implementation (high-level)
« Continuum from high-level to implementation-level (no disruptive changes)

»  Full synthesizability (to FPGAs), from models to implementations

Execution on FPGAs
(even for eventual ASIC targets)

Ideally, with actual SW
loads (full OS, apps, ...)
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Why people use BSV
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What's so special about BSV?

K Fundamentally parallel/concurrent language, no sequential “base language”

» Architectural Predictability and Controllability

» Architectures (like algorithms) are the creative part of design; cannot be entrusted to a tool!

« BSV “Rules” are a natural abstraction of hardware behavior
* Concurrent state machines on shared resources

* Rules are composable, scalable, atomic state transitions, in object-oriented style

~

catch me off-line.

« Rules are the basic logic model in many formal verification systems | see a demo, ... please

_ . If you’d like more technical
*  BSV “Rules” feed naturally into Formal Verification detail, see code examples,

* Most powerful data type system in any language for synthesizable hardware design
* User-defined types, functional types, polymorphism, typeclasses (user-defined overloading)
* Custom hardware bit-representations

* Most powerful static elaboration system in any language for synthesizable hardware design
* Higher-order functions

* Full orthogonality =» very powerful parameterization

Can parameterize {functions, modules, rules, actions} by {functions, modules, rules, actions}
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What's so special about BSV (contd.)?

* Fully synthesizable (no concept of “synthesizable subset”) A
» All high-level features of the language can be used in synthesizable code
« Both computation-oriented and control-oriented designs handled very well
« Computation: image, video, wireless, crypto, ...
« Highly complex pipelines, pipeline control, customized memory systems
« Control: CPUs, caches, MMUs, DMAs, interconnects, memory controllers, high-
\ speed I/O, network processing, ... )

If you’d like more technical
detail, see code examples,
see a demo, ... please
catch me off-line.

bluespec
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All the designs had to
support a video rate of
30 frames/second

It’s all in the
pipelined memory
architecture; BSV
is great for this!

Other
vendors

Supported

codecs BSV VP8+BS+H.264

smaller than others’

BSV VP8 4Kx2K VP8 alone

smaller than
others’ 1080p

Supported
resolutions

Relative
area

—>

Optimize for 1080p
only (not 4Kx2K)

This change took

2H6'4 H.264 Deblocking Filter < 30 minutes.
=<1l H.264 Boundary Strength

s gl VP8 Deblocking Filter
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Examples of who's using BSV for CPU/SoC design

Organization Type of model(s) Comment on 0S?
FPGA?
ARM (9, Cortex, ...) Synthesizable ISS model Yes Linux
Ellzszae; N RISC-V Synthesizable ISS model and Yes Linux
pipeline implementation
Intel [proprietary] Cycle-accurate CPU pipeline Yes Yes
models
IBM Next-gen POWER Components Yes
MIT/IBM PowerPC Cycle-accurate CPU pipeline Yes Linux
models
MIT 110-core single-chip | Exploring hardware-assisted ASIC Apps
SMP thread migration
U.of Cambridge (UK) MIPS + security With formal verification of Yes FreeBSD
and SRI (CA) enhancements security enhancements
U.of Pennsylvania Clean-slate design for | With complete formal Yes Planned
security and formal verification
proofs of correctness
_ ANURAG FPGA CPU implementation Yes ?
IIT Madras (Chennai) MIPS/RISC-V Pipelined implementation Yes ?
Itanium CPU model, 4000x faster than Yes No
Carnegie-Mellon Modelsim
University 16 CPU UltraSparc III | Synthesizable hyper-threaded Yes Solaris 8, Oracle 10g
Sunfire 3800 Server | ISS model Enterprise DB Server
U.of Texas (Austin) x86 Cycle-accurate CPU pipeline Yes Windows and Linux
models
U.of Lund (Sweden) JVM Direct HW exec of JVM Yes

bytecodes, garbage collection
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Examples of who's using BSV for CPU/SoC design

Hot Chips 2013

Hardware-level thread migration
in a 110-core shared-memory
multiprocessor

N Mieszko Lis Keun Sup Shim
I I I I I Brandon Cho llia Lebedev
Srinivas Devadas

FCAILIL 1
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Examples of who's using BSV for CPU/SoC design

Intl. Symp. on Computer Architecture (ISCA) 2014

The CHERI capability model: Revisiting RISC in an age of risk

Jonathan Woodrufff Robert N. M. Watson!
Brooks Davis* Ben Laurie®

David Chisnall®
Peter G. Neumann?

Simon W. Moore’ Jonathan Anderson’
Robert Norton! Michael Roe'

I University of Cambridge ¥ SRI International $ Google UK Ltd

firstname.lastname@cl.cam.ac.uk

Abstract

Motivated by contemporary security challenges, we reeval-
uate and refine capability-based addressing for the RISC era.
We present CHERI, a hybrid capability model that extends
the 64-bit MIPS ISA with byte-granularity memory protection.
We demonstrate that CHERI enables language memory model
enforcement and fault isolation in hardware rather than soft-
ware, and that the CHERI mechanisms are easily adopted by
existing programs for efficient in-program memory safety.

{neumann, brooks}@csl.sri.com benl@google.com

for fine-grained protection, combined with significant techni-
cal challenges (especially compatibility), has challenged the
adoption of capability systems. In contrast, coarse-grained
virtual-memory protection has seen wide deployment to isolate
application instances from one another. Ubiquitous network-
ing and widespread security threats have renewed interest in
finer-grained protection models that not only improve soft-
ware debuggability, but also mitigate vulnerability exploit
techniques (e.g., code injection via buffer overflows).

Pracecenre with canahilitv-haced addreccing enitemized hw

* Implementation of MIPS with extensions for fine-grain (object-granularity)
protection and access controls (primarily U.Cambridge UK)

« Formal verification of security properties (primarily SRI)

bluespec
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Synthesizable ISS enables Tandem Verification

Bootstrap: Verify ISS in simulation

» For each instruction executed by the BSV ISS, send “deltas” of arch. state to

C ISS, which also executes the instruction and verifies deltas.
+ Immediately identifies divergent state!

» Cheap: per-instruction deltas are quite small (couple of words of data).

e This verifies the BSV ISS

+ We do this for full OS boot and app runs, not just synthetic test programs.

* (Some tricky details about non-determinism: interrupts, cycle counts, ...)

Use and re-use: BSV ISS is synthesized to FPGA, and
used for tandem verification of actual CPU
implementations (pipelined)

+ Same game, at next level: BSV ISS verifies BSV complex
pipelined implementation
» Fast: MHz speeds, everything is on FPGA
+ Many orders of magnitude faster than simulation
 Verify full OS boot, app execution, driver execution, ...
* Re-use synthesizable ISS for verifying multiple pipelined
implementations

BSV ISS

ISS
behavior

Archite-
ctural State

In simulation @
Imported C ISS

ISS Archite-
behavior ctural State

Synthesize

BSV pipelined Implementation
|

On FPGA —
! BSV ISS

ISS
behavior

bluespec

Archite-
ctural State
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RISC-V (basis for Bluespec’s Customizable CPU and SoC Kit)

Bluespec offers a family of CPUs based on the RISC-V ISA (Instruction Set Architecture)

5t gen RISC ISA from Univ. of California, Berkeley
»  History: RISC-I (1981), RISC-II (1983), SOAR (1984), SPUR (1989) and various other specialized architectures

Open ISA (no royalties), open software tools and systems (BSD license)

Core spec: 32 bit and 64 bit integer instructions

Extensible, customizable ISA

Optional 16-bit instruction coding for small
instruction footprint

Standard extensions for integer multiply/
divide, floating point, atomic memory
operations

Standardized extension mechanism (vector,
SIMD, Quad-precision floating point, bit
manipulation, ...)

Software (open source, BSD license, on github)

10

GCC tools (gcc, objdump, gas
GDB
LLVM
Linux

WWW.riScv.org

LHardwara

Nikhil's Webview

riscv.org

Documentation

User-Level ISA Specification
(version 2.0)

Software

RISC-V Tools

>RISC-V GCC

>RISC-V LLVM

> RISC-V ISA Simulator

> RISC-V Verification Suite
> Proxy Kernel

> Front-end Server

RISC-V Linux

Hardware Tools

How Bitcoin Works

MPSoC 2014 N O]
& | (B~ Google Q

The RISC-V Instruction Set Architecture |

RISC-V (pronounced "risk-five") is a new instruction set architecture (ISA) that was originally
designed to support computer architecture research and education, but which we now hope will
become a standard open architecture for industry implementations. RISC-V was originally
developed in the Computer Science Division of the EECS Department at the University of California
Berkeley. Our goals in defining RISC-V include:

e A completely open ISA that is freely available to academia and industry.

® Areal ISA suitable for direct native hardware implementation, not just simulation or binary
translation.

® An ISA that avoids "over-architecting" for a particular microarchitecture style (e.g.,
microcoded, in-order, decoupled, out-of-order) or implementation technology (e.g.,
full-custom, ASIC, FPGA), but which allows efficient implementation in any of these.

® An ISA separated into a small base integer ISA, usable by itself as a base for customized
accelerators or for educational purposes, and optional standard extensions, to support
general-purpose software development.

® Support for the revised 2008 IEEE-754 floating-point standard.

® An ISA supporting extensive user-level ISA extensions and specialized variants.

* Both 32-bit and 64-bit address space variants for applications, operating system kernels, and
hardware implementations.

* An ISA with support for highly-parallel multicore or manycore implementations, including

| Chisel

Software
Implementations

ANGEL
(JavaScript ISA simulator)

ANGEL Source

heter multiprocessors.

* Optional variable-length instructions to both expand available instruction encoding space and
to support an optional dense instruction encoding for improved performance, static code size,
and energy efficiency.

o Afully virtualizable ISA to ease hypervisor development.

® An ISA that simplifies experiments with new supervisor-level and hypervisor-level ISA designs.

(

What's Available? ]

Right now, you can download the final user-level ISA specification, and RISC-V software tools
including a GNU/GCC software tool chain, an LLVM compiler, an ISA simulator, and a verification
suite.

¥ | The RISC-V Instruction Set Arc...

e

RISC-V News

May 6, 2014: We are
still working on the
draft of the privileged
ISA design, but hope
to release early this
summer for
comments.

May 6, 2014: RISC-V
User-Level ISA Version
2.0is released! This
document is also
available as Technical
Report UCB/EECS-
2014-54. This
represents the final
frozen version of the
base and standard
extensions (IMAFD).

March 6, 2014: RISC-V
LLVM is released at

riscv-llvm.

March 5, 2014: Try out
RISC-V Linux on
ANGEL, our in-browser
JavaScript ISA
simulator.
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Bluespec’s Customizable CPU and SoC Kit

) Synthesizable RISC-V ISS,
Host connection to GDB S for tandem verification
and console (over PCle BIUROCS
when using FPGA)

Z gdb, console

interfaces

verification Memory client |
interface interface

S — Interconnect fabric:
. ) M 4; » Parameterized number of
6+ stage pipelined imple- / Fabric master (M) and slave (S)
mentation of RISC-V interfaces
r M S "l « Interfaces: Bluespec’s
“TLM3” AMBA transactors
SoC Accelerators, IP blocks (AXI4, AHB, ...)
\ —

\4 » Crossbar or multi-stage

Written entirely in BSV

* Architected for easy composition and extension, exploiting
BSV features for this

*  Open source community: alternative RISC-V
implementations, fabrics, I/O blocks, IP blocks, accelerators,

DMA, AES, I/0O, ...

If you'd like more technical

Software: .

) detail, see code examples,
* Linux, Bl.szBOX, see a demo, etc., please
* Tool chain: gcc and Gnu tools, LLVM, gdb, soft-float, ... catch me off-line.
Coming:

* Multi-core, with coherent caches
bluespec
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Summary

« The BSV language is uniquely suited for CPU and SoC design
« High level, natural expression of hardware structure and behavior
» Powerful abstraction while remaining fully synthesizable
» Synthesizable (even models, for fast FPGA execution)
* From models to implementations

« Many organizations are using BSV for CPU/SoC design

« ARISC-V CPU and SoC kit is available from Bluespec
» Lowers the barrier to entry in the SoC space because:
« Open ISA, open source |IP, open source software, ...
« Composable and extensible, due to unique BSV properties

bluespec
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