bluespec

Bluespec BSV, the choice for CPU and SoC designers

Rishiyur Nikhil
CTO, Bluespec

MPSoC, July 2014
Relais de Margaux, France

Abstract
The BSV language is uniquely suited for CPU and SoC design, and is
being used by many CPU/SoC designers for modeling and
implementation. We describe the reasons for this, and several examples.

www.bluespec.com

© Bluespec, Inc., 2014

Range of CPU/SoC activities where BSV is used

time

4 N

CPU models
_ (incl. caches, MMUs))

(SoC models

(interconnects, memory,

| peripherals, other IP))

Refinement

-

(&

o

CPU implementations
Y

-

(&

2N

SoC implementations
/

Activities throughout the design period

Debugging

Performance analysis and validation
Software/firmware development and testing

}

Requirements for source language:
» Natural expression of architectures, from models to implementation (high-level)
« Continuum from high-level to implementation-level (no disruptive changes)

» Full synthesizability (to FPGAs), from models to implementations

Execution on FPGAs
(even for eventual ASIC targets)

Ideally, with actual SW
loads (full OS, apps, ...)

© Bluespec, Inc., 2014

e

Why people use BSV

bluespec

What's so special about BSV?

K Fundamentally parallel/concurrent language, no sequential “base language”

» Architectural Predictability and Controllability

» Architectures (like algorithms) are the creative part of design; cannot be entrusted to a tool!

« BSV “Rules” are a natural abstraction of hardware behavior
* Concurrent state machines on shared resources

* Rules are composable, scalable, atomic state transitions, in object-oriented style

~

catch me off-line.

« Rules are the basic logic model in many formal verification systems | see a demo, ... please

_ . If you’d like more technical
* BSV “Rules” feed naturally into Formal Verification detail, see code examples,

* Most powerful data type system in any language for synthesizable hardware design
* User-defined types, functional types, polymorphism, typeclasses (user-defined overloading)
* Custom hardware bit-representations

* Most powerful static elaboration system in any language for synthesizable hardware design
* Higher-order functions

* Full orthogonality =» very powerful parameterization

Can parameterize {functions, modules, rules, actions} by {functions, modules, rules, actions}

K © Bluespec, Inc., 2014 bluespey

What's so special about BSV (contd.)?

* Fully synthesizable (no concept of “synthesizable subset”) A
» All high-level features of the language can be used in synthesizable code
« Both computation-oriented and control-oriented designs handled very well
« Computation: image, video, wireless, crypto, ...
« Highly complex pipelines, pipeline control, customized memory systems
« Control: CPUs, caches, MMUs, DMAs, interconnects, memory controllers, high-
\ speed I/O, network processing, ...)

If you’d like more technical
detail, see code examples,
see a demo, ... please
catch me off-line.

bluespec

© Bluespec, Inc., 2014

All the designs had to
support a video rate of
30 frames/second

It’s all in the
pipelined memory
architecture; BSV
is great for this!

Other
vendors

Supported

codecs BSV VP8+BS+H.264

smaller than others’

BSV VP8 4Kx2K VP8 alone

smaller than
others’ 1080p

Supported
resolutions

Relative
area

—>

Optimize for 1080p
only (not 4Kx2K)

This change took

2H6'4 H.264 Deblocking Filter < 30 minutes.
=<1l H.264 Boundary Strength

s gl VP8 Deblocking Filter

© Bluespec, Inc., 2014

Examples of who's using BSV for CPU/SoC design

Organization Type of model(s) Comment on 0S?
FPGA?
ARM (9, Cortex, ...) Synthesizable ISS model Yes Linux
Ellzszae; N RISC-V Synthesizable ISS model and Yes Linux
pipeline implementation
Intel [proprietary] Cycle-accurate CPU pipeline Yes Yes
models
IBM Next-gen POWER Components Yes
MIT/IBM PowerPC Cycle-accurate CPU pipeline Yes Linux
models
MIT 110-core single-chip | Exploring hardware-assisted ASIC Apps
SMP thread migration
U.of Cambridge (UK) MIPS + security With formal verification of Yes FreeBSD
and SRI (CA) enhancements security enhancements
U.of Pennsylvania Clean-slate design for | With complete formal Yes Planned
security and formal verification
proofs of correctness
_ ANURAG FPGA CPU implementation Yes ?
IIT Madras (Chennai) MIPS/RISC-V Pipelined implementation Yes ?
Itanium CPU model, 4000x faster than Yes No
Carnegie-Mellon Modelsim
University 16 CPU UltraSparc III | Synthesizable hyper-threaded Yes Solaris 8, Oracle 10g
Sunfire 3800 Server | ISS model Enterprise DB Server
U.of Texas (Austin) x86 Cycle-accurate CPU pipeline Yes Windows and Linux
models
U.of Lund (Sweden) JVM Direct HW exec of JVM Yes

bytecodes, garbage collection

© Bluespec, Inc., 2014

bluespec

Examples of who's using BSV for CPU/SoC design

Hot Chips 2013

Hardware-level thread migration
in a 110-core shared-memory
multiprocessor

N Mieszko Lis Keun Sup Shim
I I I I I Brandon Cho llia Lebedev
Srinivas Devadas

FCAILIL 1

bluespec

© Bluespec, Inc., 2014

Examples of who's using BSV for CPU/SoC design

Intl. Symp. on Computer Architecture (ISCA) 2014

The CHERI capability model: Revisiting RISC in an age of risk

Jonathan Woodrufff Robert N. M. Watson!
Brooks Davis* Ben Laurie®

David Chisnall®
Peter G. Neumann?

Simon W. Moore’ Jonathan Anderson’
Robert Norton! Michael Roe'

I University of Cambridge ¥ SRI International $ Google UK Ltd

firstname.lastname@cl.cam.ac.uk

Abstract

Motivated by contemporary security challenges, we reeval-
uate and refine capability-based addressing for the RISC era.
We present CHERI, a hybrid capability model that extends
the 64-bit MIPS ISA with byte-granularity memory protection.
We demonstrate that CHERI enables language memory model
enforcement and fault isolation in hardware rather than soft-
ware, and that the CHERI mechanisms are easily adopted by
existing programs for efficient in-program memory safety.

{neumann, brooks}@csl.sri.com benl@google.com

for fine-grained protection, combined with significant techni-
cal challenges (especially compatibility), has challenged the
adoption of capability systems. In contrast, coarse-grained
virtual-memory protection has seen wide deployment to isolate
application instances from one another. Ubiquitous network-
ing and widespread security threats have renewed interest in
finer-grained protection models that not only improve soft-
ware debuggability, but also mitigate vulnerability exploit
techniques (e.g., code injection via buffer overflows).

Pracecenre with canahilitv-haced addreccing enitemized hw

* Implementation of MIPS with extensions for fine-grain (object-granularity)
protection and access controls (primarily U.Cambridge UK)

« Formal verification of security properties (primarily SRI)

bluespec

© Bluespec, Inc., 2014

Synthesizable ISS enables Tandem Verification

Bootstrap: Verify ISS in simulation

» For each instruction executed by the BSV ISS, send “deltas” of arch. state to

C ISS, which also executes the instruction and verifies deltas.
+ Immediately identifies divergent state!

» Cheap: per-instruction deltas are quite small (couple of words of data).

e This verifies the BSV ISS

+ We do this for full OS boot and app runs, not just synthetic test programs.

* (Some tricky details about non-determinism: interrupts, cycle counts, ...)

Use and re-use: BSV ISS is synthesized to FPGA, and
used for tandem verification of actual CPU
implementations (pipelined)

+ Same game, at next level: BSV ISS verifies BSV complex
pipelined implementation
» Fast: MHz speeds, everything is on FPGA
+ Many orders of magnitude faster than simulation
 Verify full OS boot, app execution, driver execution, ...
* Re-use synthesizable ISS for verifying multiple pipelined
implementations

BSV ISS

ISS
behavior

Archite-
ctural State

In simulation @
Imported C ISS

ISS Archite-
behavior ctural State

Synthesize

BSV pipelined Implementation
|

On FPGA —
! BSV ISS

ISS
behavior

bluespec

Archite-
ctural State

© Bluespec, Inc., 2014

RISC-V (basis for Bluespec’s Customizable CPU and SoC Kit)

Bluespec offers a family of CPUs based on the RISC-V ISA (Instruction Set Architecture)

5t gen RISC ISA from Univ. of California, Berkeley
» History: RISC-I (1981), RISC-II (1983), SOAR (1984), SPUR (1989) and various other specialized architectures

Open ISA (no royalties), open software tools and systems (BSD license)

Core spec: 32 bit and 64 bit integer instructions

Extensible, customizable ISA

Optional 16-bit instruction coding for small
instruction footprint

Standard extensions for integer multiply/
divide, floating point, atomic memory
operations

Standardized extension mechanism (vector,
SIMD, Quad-precision floating point, bit
manipulation, ...)

Software (open source, BSD license, on github)

10

GCC tools (gcc, objdump, gas
GDB
LLVM
Linux

WWW.riScv.org

LHardwara

Nikhil's Webview

riscv.org

Documentation

User-Level ISA Specification
(version 2.0)

Software

RISC-V Tools

>RISC-V GCC

>RISC-V LLVM

> RISC-V ISA Simulator

> RISC-V Verification Suite
> Proxy Kernel

> Front-end Server

RISC-V Linux

Hardware Tools

How Bitcoin Works

MPSoC 2014 N O]
& | (B~ Google Q

The RISC-V Instruction Set Architecture |

RISC-V (pronounced "risk-five") is a new instruction set architecture (ISA) that was originally
designed to support computer architecture research and education, but which we now hope will
become a standard open architecture for industry implementations. RISC-V was originally
developed in the Computer Science Division of the EECS Department at the University of California
Berkeley. Our goals in defining RISC-V include:

e A completely open ISA that is freely available to academia and industry.

® Areal ISA suitable for direct native hardware implementation, not just simulation or binary
translation.

® An ISA that avoids "over-architecting" for a particular microarchitecture style (e.g.,
microcoded, in-order, decoupled, out-of-order) or implementation technology (e.g.,
full-custom, ASIC, FPGA), but which allows efficient implementation in any of these.

® An ISA separated into a small base integer ISA, usable by itself as a base for customized
accelerators or for educational purposes, and optional standard extensions, to support
general-purpose software development.

® Support for the revised 2008 IEEE-754 floating-point standard.

® An ISA supporting extensive user-level ISA extensions and specialized variants.

* Both 32-bit and 64-bit address space variants for applications, operating system kernels, and
hardware implementations.

* An ISA with support for highly-parallel multicore or manycore implementations, including

| Chisel

Software
Implementations

ANGEL
(JavaScript ISA simulator)

ANGEL Source

heter multiprocessors.

* Optional variable-length instructions to both expand available instruction encoding space and
to support an optional dense instruction encoding for improved performance, static code size,
and energy efficiency.

o Afully virtualizable ISA to ease hypervisor development.

® An ISA that simplifies experiments with new supervisor-level and hypervisor-level ISA designs.

(

What's Available?]

Right now, you can download the final user-level ISA specification, and RISC-V software tools
including a GNU/GCC software tool chain, an LLVM compiler, an ISA simulator, and a verification
suite.

¥ | The RISC-V Instruction Set Arc...

e

RISC-V News

May 6, 2014: We are
still working on the
draft of the privileged
ISA design, but hope
to release early this
summer for
comments.

May 6, 2014: RISC-V
User-Level ISA Version
2.0is released! This
document is also
available as Technical
Report UCB/EECS-
2014-54. This
represents the final
frozen version of the
base and standard
extensions (IMAFD).

March 6, 2014: RISC-V
LLVM is released at

riscv-llvm.

March 5, 2014: Try out
RISC-V Linux on
ANGEL, our in-browser
JavaScript ISA
simulator.

© Bluespec, Inc., 2014

bluespec

11

Bluespec’s Customizable CPU and SoC Kit

) Synthesizable RISC-V ISS,
Host connection to GDB S for tandem verification
and console (over PCle BIUROCS
when using FPGA)

Z gdb, console

interfaces

verification Memory client |
interface interface

S — Interconnect fabric:
.) M 4; » Parameterized number of
6+ stage pipelined imple- / Fabric master (M) and slave (S)
mentation of RISC-V interfaces
r M S "l « Interfaces: Bluespec’s
“TLM3” AMBA transactors
SoC Accelerators, IP blocks (AXI4, AHB, ...)
\ —

\4 » Crossbar or multi-stage

Written entirely in BSV

* Architected for easy composition and extension, exploiting
BSV features for this

* Open source community: alternative RISC-V
implementations, fabrics, I/O blocks, IP blocks, accelerators,

DMA, AES, I/0O, ...

If you'd like more technical

Software: .

) detail, see code examples,
* Linux, Bl.szBOX, see a demo, etc., please
* Tool chain: gcc and Gnu tools, LLVM, gdb, soft-float, ... catch me off-line.
Coming:

* Multi-core, with coherent caches
bluespec

© Bluespec, Inc., 2014

12

Summary

« The BSV language is uniquely suited for CPU and SoC design
« High level, natural expression of hardware structure and behavior
» Powerful abstraction while remaining fully synthesizable
» Synthesizable (even models, for fast FPGA execution)
* From models to implementations

« Many organizations are using BSV for CPU/SoC design

« ARISC-V CPU and SoC kit is available from Bluespec
» Lowers the barrier to entry in the SoC space because:
« Open ISA, open source |IP, open source software, ...
« Composable and extensible, due to unique BSV properties

bluespec

© Bluespec, Inc., 2014

