Low Power Hybrid Memory Cube with Link On/Off Management

2014.7.10

Junwhan Ahn, Sungjoo Yoo*, Kiyoung Choi Seoul National Univ. & POSTECH*

Hybrid Memory Cube (HMC)

010/212

High Speed Links

- 3D-stacked DRAM with an integrated logic die
- High-speed serial links providing up to 320GB/s
- High parallelism (16/32 vaults/cube, 16 banks/vault)
- Abstract, packetized communication protocol

[Micron]

Logic Layer

Hybrid Memory Cube

Description Recorded interaction San Francisco 2011.

Date

itel)

Energy Breakdown

Motivation

- Problem: off-chip links of HMC consumes significant static power even when they are not used
- HMC provides power state management for links
 - Sleep mode: SerDes of each link is turned off
 - Down mode: SerDes & PLL are turned off

Hybrid Memory Cube Power State Management

7 Power State Management

Each link can independently be set into a lower power state through the usage of the power state management pins, LxRXPS and LxTXPS. Each of the links can be set into a

Motivation

- HMC provides power state management for links
 - Sleep mode: SerDes of each link is turned off
 - Down mode: SerDes & PLL are turned off
- Problem: very long sleep/wakeup latencies
 - 650ns to enter sleep mode (2,040 cycles at 3GHz)
 - **<u>150us</u>** to enter down mode (450,000 cycles at 3GHz)

Impact of long sleep/wakeup latencies on system performance should be minimized

Motivation I: Performance vs. # Links

Bandwidth demand varies across applications With only 5% performance loss 1.2 50%~87.5% of links can be turned off! 1 5% Normalized Speedup 0.8 0.6 0.4 0.2 0 H1 H2 M1 M2 L1 L2 5 8 6

Opportunity to Turn Off Links

- Multi-channel DIMM cannot turn off links, i.e., channels
- HMC has an internal crossbar which enables link turn-off

DDRx SDRAM

HMC

Motivation II: Prefetching vs. Link Turn-Off

- Prefetching complicates link on/off control
- In-effective prefetching prevents us from turning off
 links
 Bandwidth Consumption

Solution Overview

- HMC link power management
 - Turn off as many links as possible with a small performance loss
- Two-level prefetching
 - Become conservative when prefetching is not effective, which enables us to turn off more links

HMC Link Power Management

• Objective: find the smallest number of active links *n* that satisfies the following performance constraint

Longer link delay
is allowed

$$\rightarrow$$
 Turn off more links
 $\frac{\overline{l_n} - \overline{l_N}}{\overline{m}} \le \alpha \times \frac{1}{u} \bigvee$ When memory demand
is low

- $-\overline{l_n}$: average link delay under *n* active links ($1 \le n \le N$)
- $-\overline{m}$: average memory access latency
- u: link utilization (= memory demand)

HMC Link Power Management

• Objective: find the smallest number of active links *n* that satisfies the following performance constraint

$$\frac{\overline{l_n} - \overline{l_N}}{\overline{m}} \le \alpha \times \frac{1}{u}$$

- $-\overline{l_n}$: average link delay under *n* links ($1 \le n \le N$)
- $-\overline{m}$: average memory access latency
- -u: link utilization

How to estimate average link delay for each link configuration?

Link Delay Monitor

- Hardware structure that simulates link congestion for all the possible link configurations at the same time
- Two types of counters
 - Delay counter(n): total link delay of all requests assuming n links
 - Busy counter(*i*, *n*): the number of cycles for the link *i* to become free under *n* links
- Each link configuration (with *n* links) requires *n* busy counters and one delay counter
 - $O(n^2)$ for busy counters

All The Possible Link Configurations Are Simulated During Runtime

Link Delay Monitor

HMC Link Power Management

• Objective: find the smallest number of active links *n* that satisfies the following performance constraint

$$\frac{\overline{l_n} - \overline{l_N}}{\overline{m}} \le \alpha \times \frac{1}{u}$$

- Periodically adjust the number of active links, n
 - Turn on or off only one link at a time
 - Period should be much larger than sleep/wakeup latency

Solution Overview

- HMC link power management
 - Turn off as many links as possible with a small performance loss
- Two-level prefetching
 - Become conservative when prefetching is not effective, which enables us to turn off more links

Two-Level Prefetching

- Level 1: a *conservative* on-chip prefetcher
 - Reduces prefetch traffics thereby enabling us to turn off links
 - However, the conservative prefetcher can incur high miss rate
- Level 2: an *aggressive* in-HMC prefetch buffer
 - Aggressive prefetcher is used to reduce miss penalty by storing prefetched data in the prefetch buffer on logic layer

Evaluation Methodology

- Cycle-accurate x86-64 simulator based on Pin
 - Eight 3GHz, four-issue, out-of-order cores
 - 4MB, 16-way, 64B-block, shared L2 cache
 - Stream prefetcher with different prefetch distance/degree
 - An 8GB HMC with 8 DRAM layers, 32 vaults
 - 8 full-duplex links, 8 10Gb/s lanes per link
- CACTI-3DD & McPAT for HMC modeling
- Workloads: 12 multi-programmed SPEC CPU2006

Comparison

- Static Best: a fixed link configuration for each application
- HDS: Prior work on on/off links of high-degree switches (HDS)
- Proposed link power management (LPM)
 - 100us period, slowdown threshold lpha=0.05
 - 165 bytes of storage overhead
- Two-level prefetching (2LP)
 - PF distance: 8/64, PF degree: 1/4 (on-chip/in-HMC)
 - 16KB per vault, 16-way, 64B-block in-HMC prefetch buffer

HMC Energy Consumption

Link Energy Consumption

Speedup

Summary

- Hybrid Memory Cube (HMC)
 - Higher bandwidth through power hungry serial links
- Dynamic power management of off-chip links
 - Trade-off between performance and link energy consumption
 - Link delay monitor simulating each possible link configuration
 - Two-level prefetching
 - Conservative prefetcher on CPU chip: prefetch traffic reduction
 - Aggressive prefetch buffer on HMC: LLC miss penalty reduction
- Evaluation
 - 51% reduction in HMC energy with 0.8% performance degradation