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My Talk in MPSoC 2009

e A concept of Multi-Performance Processor (MPP) is presented

e Integrating multiple same-ISA CPU cores in a processor core
Only one CPU core is activated at a time

e Pros: Each CPU core is optimized for its frequency and Vpp

Very low-overhead core migration is possible
e Cons: Large area overhead involved

Multiple on-chip Vps are needed
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Motivation

e Highest energy efficiency is
obtained at near-threshold
voltage (NTV)
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Approach

e A concept of Multi-Performance Processor (MPP) is presented

e Integrating multiple same-ISA CPU cores in a processor core
e Only one CPU core is activated at a time

¢ High peak performance
e LOw average power
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More Progressive Approach

Optimize the gate width of target standard cells for

NTV operation

o Objective function: ED*

Target

Vbbb Vbbb

E = Total energy consumed
through Vyp, and Vpps

VbD3

Vbp2

FO4
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FO4 load
W unchanged

D = Pdrise + Tpdf Ll

Note: D* :( Pdyise +Tpdfall )




Target Standard Cells

o Optimize the transistor size of foundry-provided
standard cells (63 cells) for 0.6V operation

o Commercial 65nm process technology is used
Nominal Vpp: 1.2V, Vg :around 0.5V

o Logic Type: INV, BUF, NAND2, NOR2, AND2, OR2
AOI21, OAI21, AOI22, OAI22

o Drive Strength: 0.5X, 1X, 1.5X, 2X, 3X, 4X, 6X, 8X,
10X, 12X, 16X

Layout examples)




Optimization flow

Foundry provided

Explore gate width cell to optimize

) HSPICE

For each gate width, measure
the energy consumption E and
the propagation delay D

Find the optimum gate
width W+ Whic
minimizes ED*

!

Based on W,,,;, find a common

WELL boundary among cells so
as to minimize the total area
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Pareto Optimal Curve

* A set of ED* optimal points = Pareto optimal curve

* Foundry-provided cells are close to the Pareto
optimal curve in nominal voltage operation

* Far from Pareto optimum in NTV operation
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Results of P/N Width Optimization
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Experimental Setup

o Target: practically large scale circuits
selected from ISCAS’85 benchmark suite

o Objective: evaluating the NTV library cells

Improvement of energy efficiency in individual
cells does not always lead to an improvement
of energy efficiency in large scale circuits

evaluating not only the energy consumption,
but also area and performance of the circuits

12-bit ALU, 32-bit adder / comparator etc.
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Synthesis Results of ISCAS'85 (1/2)

Energy consumed in NTV (0.6V) operation

Circuits synthesized with the cells optimized for NTV
* achieve 23% energy reduction for a given constraint
» satisfy more strict timing constraints
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Synthesis Results of ISCAS'85 (2/2)

Energy consumed in nhominal V5, operation

Circuits synthesized with the foundry-provided cells
» always achieve lower energy consumption
» satisfy more strict timing constraints
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Conclusion

O

Optimization method for near-threshold
voltage is presented.

The cells optimized for NTV reduce the
energy consumption of benchmark circuits
operated with NTV by 23% on average.

Delay and area of the circuits are reduced.
Future work

Improve the optimization procedure
Apply the method to the MPP design
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