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General Trends
Many Big Data applications
! Fast and reliable identification of so-called network motifs in 

large networks
! Subgraphs whose occurrence is significantly higher than 

expected in a random graph model
! Here special variant of motifs: co-occurrence
! Application examples: cleaning biological data, e-commerce like 

recommendation systems

HW architectural trends
! More and more functionality moves into embedded devices
! Dedicated accelerator approach due to energy efficiency
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275 million products
+1 added per second
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Personalized Recommendation
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How it works
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Algorithm
! Absolute co-occurrence value has no real meaning since popular 

movies will have a high co-occurrence
! Some normalization necessary

Our approach: Markov Chain Monte Carlo based algorithm

1. Calculate expected co-occurrence on a set of random graphs 
with the same degree distribution (random graph are generated 
via swaps)

1. Calculate leverage as difference between original co-occurrence 
and expected co-occurrence: high leverage ⇒ the more similar 
are the nodes

7

MCMC Algorithm
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104 sample-graphs

109 swaps

1012 cooccs

Netflix: 500k nodes, 50 million edges, 200 MB

1016 coocc-op.

1 GHz

115 days

Challenges
! #samples, #swaps
! Parallelization and efficient coocc calculation
! Coocc computation: graph access, comparison, addition
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Phase transition
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10x
20x

0.9 % Quality Loss

! Huge amount of simulations: observed phase transitions
! Efficient on-line Heuristic: #samples, #swaps

Efficient Coocc-Computation
Graph access is key for fast coocc computation
! Sparse graph e.g. Netflix dataset = 0.6%
! How to store graph: list or full matrix?

Due to sparse matrix: list is normally the preferred solution (19 bit/entry)

Our approach: store full matrix
! Only 1 bit entry
! Netflix data set ~ 1.2GB
! Very fast access and large parallelism
! 64bit DDR channel@800MHz: 256 edges/cycle

Cache line
Combine comparison and addition
Fully highly adder tree (superior to CPU/GPU)
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Coocc Unit
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28 nm ASIC, 400 MHz, 51 mm²
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61,440 graph
coocc-operations/cycle

240 coocc modules,
256 bit adder trees

Memory:
3x DDR3,
48 GB,
800 MHz, 
38 GB/s

Limitations:
107 nodes
1011 edges
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Results Netflix
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21x

490x

20%

11x 1.1x

Cluster: 10 nodes, each: 2xIntel Xeon X5680 @ 12x 3.33 GHz, 32nm, 48 GB DDR3 memory
FPGA: Xilinx Zynq 7045, 28nm, 8 GB memory, ZC706 development board, 17 W each
ASIC: 28nm low-power bulk, 400 MHz, 48 GB memory,  15.8 W each

For more information please visit

http://ems.eit.uni-kl.de




