
1

An Embedded Computing Architecture for Finding
Similarities in Large Networks

Norbert Wehn
wehn@eit.uni-kl.de

MPSoC’2015
July 13-17, 2015

Ventura, CA

HPC on embedded computing devices
- a Case Study -

General Trends
Many Big Data applications
! Fast and reliable identification of so-called network motifs in

large networks
! Subgraphs whose occurrence is significantly higher than

expected in a random graph model
! Here special variant of motifs: co-occurrence
! Application examples: cleaning biological data, e-commerce like

recommendation systems

HW architectural trends
! More and more functionality moves into embedded devices
! Dedicated accelerator approach due to energy efficiency

2

2

3

4

275 million products
+1 added per second

3

Personalized Recommendation

5

How it works

6

A user
watches or
rates movie

Recommendation
System

User
Database

User
(movie history)

Recom-
mendation

List

Sam
Inception

John

Fight Club

Sarah

Pretty Woman

Simon

Johanna

The Dark Knight

Notting Hill

The Dark
Knight

InceptionPretty
Woman

Notting
Hill

Fight Club

1
1

Co-occurence

4

Algorithm
! Absolute co-occurrence value has no real meaning since popular

movies will have a high co-occurrence
! Some normalization necessary

Our approach: Markov Chain Monte Carlo based algorithm

1. Calculate expected co-occurrence on a set of random graphs
with the same degree distribution (random graph are generated
via swaps)

1. Calculate leverage as difference between original co-occurrence
and expected co-occurrence: high leverage ⇒ the more similar
are the nodes

7

MCMC Algorithm

8

104 sample-graphs

109 swaps

1012 cooccs

Netflix: 500k nodes, 50 million edges, 200 MB

1016 coocc-op.

1 GHz

115 days

Challenges
! #samples, #swaps
! Parallelization and efficient coocc calculation
! Coocc computation: graph access, comparison, addition

5

Phase transition

9

10x
20x

0.9 % Quality Loss

! Huge amount of simulations: observed phase transitions
! Efficient on-line Heuristic: #samples, #swaps

Efficient Coocc-Computation
Graph access is key for fast coocc computation
! Sparse graph e.g. Netflix dataset = 0.6%
! How to store graph: list or full matrix?

Due to sparse matrix: list is normally the preferred solution (19 bit/entry)

Our approach: store full matrix
! Only 1 bit entry
! Netflix data set ~ 1.2GB
! Very fast access and large parallelism
! 64bit DDR channel@800MHz: 256 edges/cycle

Cache line
Combine comparison and addition
Fully highly adder tree (superior to CPU/GPU)

10

6

Coocc Unit

11

Cached Line A 256

Streamed Line

Compare block
...

Coocc
+

Adder-Tree

Cached Line B

Compare block

Adder-Tree

256

...

Coocc
+

240 Modules

61,440 cooc
calcuations/cycle

1 bit

1 bit
2 bit...

28 nm ASIC, 400 MHz, 51 mm²

12

61,440 graph
coocc-operations/cycle

240 coocc modules,
256 bit adder trees

Memory:
3x DDR3,
48 GB,
800 MHz,
38 GB/s

Limitations:
107 nodes
1011 edges

7

Results Netflix

13

21x

490x

20%

11x 1.1x

Cluster: 10 nodes, each: 2xIntel Xeon X5680 @ 12x 3.33 GHz, 32nm, 48 GB DDR3 memory
FPGA: Xilinx Zynq 7045, 28nm, 8 GB memory, ZC706 development board, 17 W each
ASIC: 28nm low-power bulk, 400 MHz, 48 GB memory, 15.8 W each

For more information please visit

http://ems.eit.uni-kl.de

