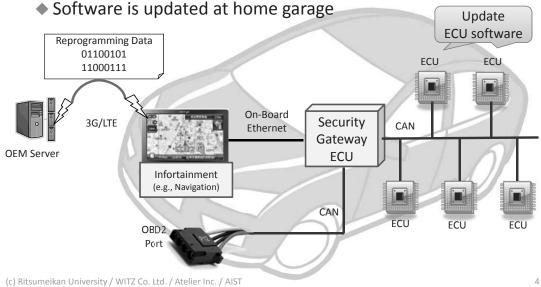

PUF-based Security Enhancement for Automotive Software Update

Hiroyuki Tomiyama

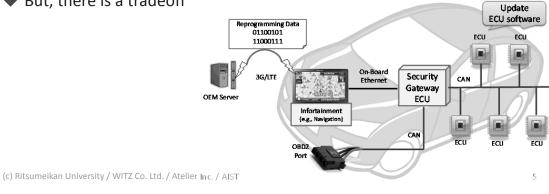
Ritsumeikan University http://hiroyuki.tomiyama-lab.org/

MPSoC 2015

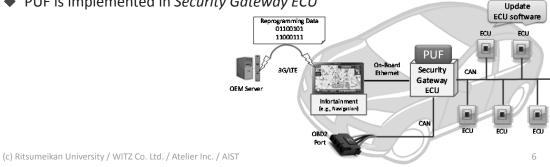

Background

- Recent trends in automotive electronics
 - More and more functionalities are implemented in software
 - Connected to the Internet and other networks
- Automotive software needs to be updated after sales
 - Higher security and safety, lower CO₂ emission, better mileage, better driving comfort, and so on
- At present, automotive software update (a.k.a. reprogramming) is only possible at OEM-authorized garages
 - ◆ At the time of recall, repair or periodic inspection
 - Reprogramming takes hours
 - Not as easy as Microsoft Windows Update

(c) Ritsumeikan University / WITZ Co. Ltd. / Atelier Inc. / AIST

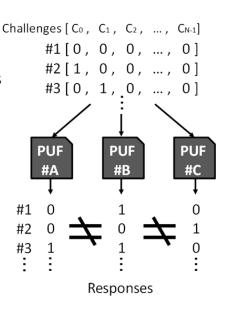


- Future automotive software needs to be updated more often.
- Remote software update will be necessary


Problems

- Software update process must be
 - Secure
 - If the update process is not secure, the car gets more dangerous
 - Secure update needs authentication and encryption
 - Fast
 - User cannot drive the car during the update process
 - Inexpensive
 - Automotive manufacturers always worry about production costs
- But, there is a tradeoff

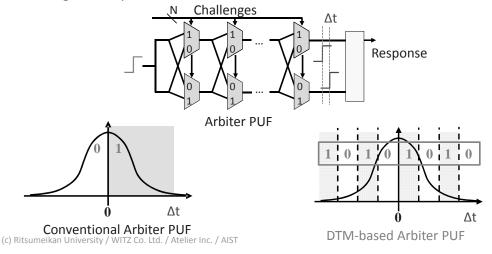
Our Approach


- We employ AES to encrypt reprogramming data between OEM server and vehicles
 - Faster and less expensive than public key cryptosystems (e.g., RSA)
 - But, we need to protect secret keys
 - In many systems, secret keys are stored in secure non-volatile memory Secure NVM is expensive
- We encrypt secret keys and use PUF as an AES key
 - The encrypted keys can be stored in normal NVM
 - Other secure data can be stored in NVM or RAM with PUF-based encryption
- PUF is implemented in Security Gateway ECU

PUF: Physical(ly) Unclonable Functions

- PUF exploits physical variation of individual devices
 - Unclonable
 - Similar to fingerprint, but functions with inputs and outputs
- PUF generates unique ID numbers
- Various PUF implementations
 - Optical PUF
 - Magnetic PUF
 - SRAM PUF
 - Arbiter PUF
 - Ring Oscillator PUF
 - and more

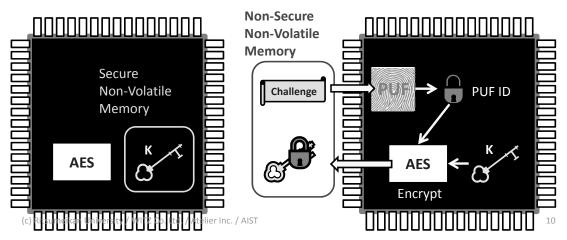
(c) Ritsumeikan University / WITZ Co. Ltd. / Atelier Inc. / AIST

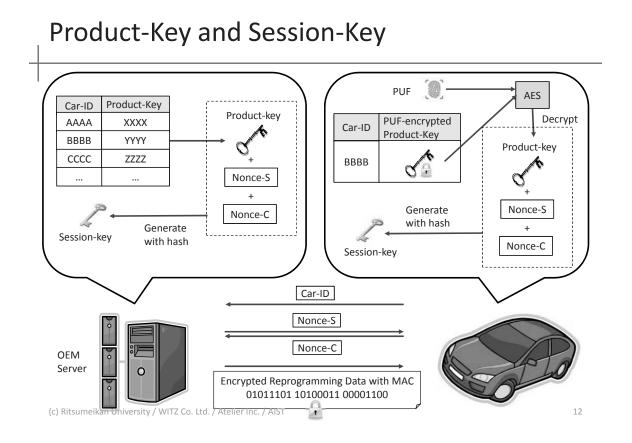


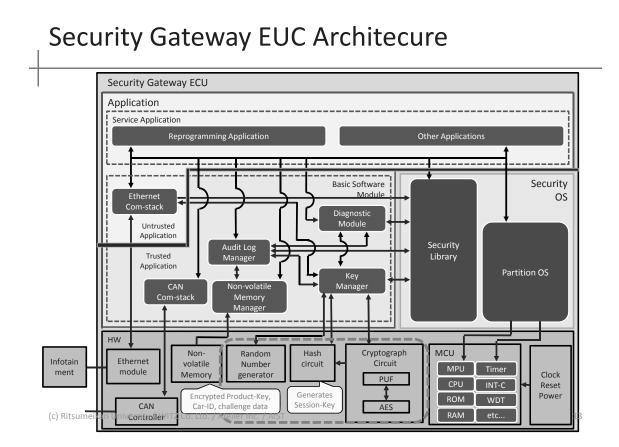
PUF: Physical(ly) Unclonable Functions

- PUF needs to be unique and robust
- Uniqueness
 - PUF individuals should produce different responses (outputs) from the same challenges (inputs)
 - Professor Fujino, a member of our team, proposed DPMbased arbiter PUF for better uniqueness
- Robustness
 - A PUF should produce same responses from same challenges in any condition over years
 - Robustness against aging, temperature, voltage variation, and so on
 - Error correction is necessary

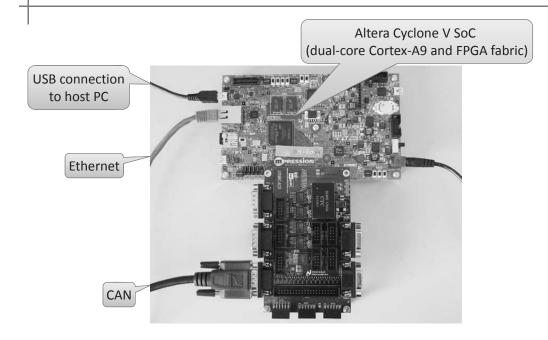
DPM-based Arbiter PUF


- Developed by Professor Takeshi Fujino (our team member) [ISCAS 2011]
- Based on arbiter PUF
 - multiplexer chain
- Finer-granularity delay time measurement
 - Higher uniqueness


9


Secure Key Storage with PUF

- Traditional Method
 - Key (K) has to be stored in secure non-volatile memory
- Our Method
 - Manufacturing time
 - Encrypt the key (K) with PUF-ID and store the PUF-encrypted key in non-secure NVM
 - Reprogramming time
 - Decrypt the key with PUF-ID



Secure Key Storage with PUF Traditional Method Key (K) has to be stored in secure non-volatile memory Our Method Manufacturing time • Encrypt the key (K) with PUF-ID and store the PUF-encrypted key in non-secure NVM Reprogramming time Decrypt the key with PUF-ID Non-Secure nnnnnnnnnnn Non-Volatile Memory Secure Non-Volatile PUF ID Challenge Memory AES AES Decrypt (c) Ritsumeikan Uhiver WITZ Co. Itd. / Atelier Inc. / AIST

FPGA Prototype of Security Gateway ECU

Concluding Remarks

- Our on-going project on remote update of automotive software
 - The key idea is to encrypt secret keys using PUF-ID as a key
 - Secure NVM is not necessary
 - FPGA prototyping of security gateway ECU
- Future work
 - Prototyping a server system
- Special Thanks
 - Takeshi Fujino (Ritsumeikan University)
 - Hideyuki Takeda (WITZ Co. Ltd.)
 - Ayumu Sugiyama (WITZ Co. Ltd.)
 - Hiroaki Hara (WITZ Co. Ltd.)

(c) Ritsumeikan University / WITZ Co. Ltd. / Atelier Inc. / AIST