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Increasing complexity of mission-critical systems fueled
by semiconductor technology evolutions

But the decreasing reliability of processors requires new
approaches
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Hard real-time systems in Thales
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Past of MC systems

¢ Limited in number and service requirements

Present and future of MC systems

+ Unprecedented growth in diversity and performance requirements
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Mission Critical Systems: high-perf. requirements

Code size evolution for critical embedded systems

Code size for Airbus aircraft Code Size for Space Missions Code size for automotive
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The case for avionics (1)

Flight Deck Navigation & Flight Cabin Avionics Utilities Electrical
Control systems Systems

CDS Control & Display Eli IMA Integrated DSMS Doors & ,

T e speoimen Gl e = (R e
x " " . TopSeries i-5000 AFDX E/S Aircraft Syste 2)

HUD Head-Up Display  FCU Fight Control Unit (1) video on demand Full Duplex End- BSCF Braking & VEERE)

OANS On board SNS Stand-by Navigation on seats System (1) Steering System (3)

lS\I rptort r\:?\)/lganon System

ystem

BPI Brake Pressure DRA Digital Radio Altimeter
Indicator RGU Ring Gyro Unit
AU Accelerometer Units

(1) In partnership with Diehl Aerospace (3) Supplied to Messier Bugatti
(2) Developed by Aerolec, a JV with Goodrich (4) Delivered by Diehl Aerospace A




The case for avionics (2)

Avionics bay Motivations for IA
Functionality Number of
(arbitrary log scale) electronic
equipment
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Challenging non-functional requirements

Safety
constraints

Hard real-
time
constraints

Certification

Mission &

safety critical
systems

Low
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volumes
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Technology scaling brings new challenges!

New technological process Increased susceptibility Increased aging of
and process variability to environment devices

Gate
. - ‘ Source I

Pl
Energetic charged particle DAlam, 2007]
¢ New technologies: FD-SOI, ¢ Soft errors (SEU, MBU), « Early wear-out effects:
FinFET, 3D integration, ... EMC increased sensitivity BTI, TDDB, HCI,

« Extensive process variations ¢ Transient faults electromigration, ...

bished,

« Infant mortality and + Permanent faults

intermittent faults
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Transistor aging and service life guarantee

¢ Critical embedded systems life ~ A
expectancy far exceeds that of their 200
components lifetime 2y.

¢ Need of preventive maintenance = impact\,zv‘°lr 3y.
on cost and business model g

\d
+ Will exacerbate the problem of the o® % 10 years
components obsolescence W wear-out defects!

Saoicenes »

2
¢ Degradation of SWaP expected for higher » 15 _

level of redundancy if strong degradation &
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>
Life expectancy :
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¢ Reduction of the operating domains could
limit the use of advanced component
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Operational reliability and safety impact

Total uncorrected SRAM SEU rate

of different microprocessors Aggregate aircraft system safety
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+ Increasing soft-errors failure rates ¢ Current practices based on the
with increasing processors complexity hypothesis of constant failure rates
¢ MBU become more prominent while ¢ Now challenged by early wear-out £
flip-flop SEU also become a concern effects in advanced technologies :

+ Severe radiation environment in high + Risk for the safety of the system if not i
altitude flight or in space appropriately mitigated 3

" o
s eserved tipversion 7.1.0

MPSoC 2015 - July 13-17, 2015

Theles STHALES 2015 Allign

THALES

Certification and qualification

+ Safety-critical systems have to be Functional Hazard Analysis
certified by independent authorities « severity allocation for

each system function

uonedyads

¢ Aerospace safety process driven
from the safety requirements

Severity Failure rate Design Assurance Level

catastrophic

+ High Temperature Operating Life hazardous
(HTOL) test commonly used for
accelerated testing but questioned

major

O 0o w

minor

¢ And what about the use of the
processor outside of its Design to safety

specification (derating)? + redundancy and monitoring

* DAL allocation & mitigation
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Impact on timing guarantees and predictability

Critical safety = predictability + reliability

distribution

¢ Timing predictability of error detection
& recovery mechanisms?

¢ Impact of hard faults in prediction
structures and caches

¢ Guarantees on temporal and spatial
isolation valid in presence of faults?

safety
margin

Z\ 9
execution time
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The need of new system design approaches

¢ Challenge for future technologies: building “dependable” systems
on top of unreliable components

o which will degrade and even fail during normal lifetime of the chip

o while providing guarantees on reliability, timing ...
Application Flexibility/adaptability

Operating System

Architecture

Circuit

Technology Avoid to impact SW layers
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Cross-layer Early Reliability Estimation
()-‘"’C lereco

o The CLERECO FP7 Collaboration Project

o http://www.clereco.eu

System failure rate

SW MASKING
¢ Cross-layer estimation:
o Reliability is evaluated at system level

o Considering the hardware structure as well as the

software stack (application, OS, ...) Faults &
- HW MASKING

+ Standard reliability evaluation approaches:
massive and time-consuming simulations
and/or fault injection campaigns

Raw error rate
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The CLERECO objectives

o EARLY: reliability evaluation performed in every phase of the
design cycle even when only high-level specifications are available

o Reduction of area and design effort (dedicated to reliability)
o Reduction of performance and energy lost for reliability

Reliability
’ e “Costs”
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The CLERECO methodology in a nutshell

Software fault-injection

« At the intermediate code level v A application + 0S
in the LLVM framework characterization

¢ Using a SW fault model I
defined at the ISA level M
Micro-architectural Software

simulator fault injection

¢ Best trade-off between
simulation time & accuracy

¢ Use of gem5 and MARSSx86
simulators

E SW fault rates
s =
¢ Fault injection in all the major
parts of the processor

Technology characterization

¢ Evaluation of raw error rates
for different technologies and Ff" —ﬁ
different operating conditions | - .Y

raw error rates

I—
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+ Resorting to Spice simulation

System model based on
Bayesian network

s

Software fault models
e.g. instruction replacement

%5

Hardware fault model
e.g. flip-flop upset

¥
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Conclusions

+ Critical Embedded Systems have specific
and diverse requirements

+ Strongly impacted by:
o the & complexity of processor architecturesi' /
o the N reliability of CMOS technologies

+ Mitigation techniques at the architecture
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level and/or at the application/system level w
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