Converging Memory and Storage for Big Data Applications

Qiong Cai Systems Research Lab HP Labs

MPSoC – July 2015

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Memory System Challenges

- Bandwidth and capacity increase significantly mainly due to the following reasons
 - More computing nodes in the system
 - Emerging memory-intensive applications such as in-memory Big Data applications
- DRAM scaling may not at 1x nm
 - Current scaling solutions such as relaxed core timing and on-die ECC decrease the performance and increase the complexity

Multi-channel DDR-based main memory system may not be scalable in the long run.

7 © Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Emerging Memory Technologies

- High bandwidth memory technology
 - Hybrid Memory Cube, High Bandwidth Memory, WIDE-IO
- High performance persistent memory
 - STTRAM, Memristor
- · High capacity persistent memory/storage
 - Phase change memory, 3D NAND

We can leverage different properties of memory technologies to architect a flat memory and storage system.

© Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

hp

Memory Side Accelerator for NVM– High Level

This is a 40-years old idea. Why now?

- MSA can help to decrease the latency. It is critical to reduce NVM latency, since NVM latency is still longer than DRAM latency.
- NVM bandwidth is precious. MSA can utilize NVM bandwidth more effectively.
- MSA provides more energy efficient way to compute memory intensive operations.
- The programming model and tool chain for accelerators are getting mature. MSA can leverage it.

Label	Position	Types	Characteristics	Usages
1	SoC Side	GPU or FPGA accelerator in another socket or on the PCIe	Powerful computing capability (5x-10x more than CPU), memory bandwidth could be bottleneck (GPU has its own local memory)	The whole application
2	NVM Side	Simple cores in the memory controller	Limited computing power (1/10 of SoC), low memory latency and spare memory bandwidth	Dependent and memory intensive code snippet ; background data processing
© Copyright	t 2015 Hewlett-Packard Dev	velopment Company, L.P. The information contained herein	is subject to change without notice.	(

Conclusions

- We expect to see a converged memory and storage system soon
- · It is a whole stack change
 - · Hardware: NVM technology, CPU, memory controller, etc
 - System Software: OS, compiler, memory management, runtime framework, etc
 - · Applications: algorithms and data structures, use cases, etc

18 © Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

hp