

AN INDUSTRY STANDARD = MANY YEARS TO WIDE-SPREAD ADOPTION

- MCAPI effort started in 2005
- Version 1.0 released in 2009
- Version 2.0 release in 2011
- Version 3.0 starting 2014 (complete in 2015?)
 - Zero copy messaging
 - Subsets for messaging, channels, IoT, etc.
 - Safety critical support

WHY DEVELOPERS ARE USING MCAPI

- · Functionality aligns with design requirements
- Messaging scales
 - Local and remote nodes
 - Transport independent communications
 - AMP and SMP
- Application portability
 - Separates application from platform and architecture
 - Heterogeneous and homogeneous ISA, OS and transport
- · Internet of Things. Really?

WHY MCAPI?

- Robust API that enables communications across compute elements (cores, hardware accelerators, etc.)
- Allows the implementation to communicate within same chip or for inter-chip communications
- Can use the same API to share data (communicate) across many transports.
- An application node may be located on a core in the same chip or an IoT node in the infrastructure.

How MCAPI?

- MCAPI is the "tip of the iceberg", providing the API to the application.
- Consider the API as the steering wheel and accelerator pedal.
 - The driver only sees the steering wheel and accelerator pedal.
 - The steering implementation may be mechanical or electrical (drive by wire). Same steering wheel API and same driver.
- The "invisible" implementation (middleware) makes it all work with the many protocols and interconnects.
- MCAPI enabled application nodes can communicate across the supported transports with the same MCAPI functions and with the same application source code.
 - Commercial tools, such as Poly-Platform can select and configure the transport
 - Supports shared memory, closely distributed wire transports (e.g. RapidIO) and widely distributed transports (e.g. USB, Infiniband).

IoT Benchmark Strategy to Quantify IoT 'Sleepy Node' Energy Efficiency

IOT EDGE NODES CONTINUED

WRAP UP

- Why MCA? Why MCAPI?
- Shift to the IoT
- Meeting the battery life requirements for IoT
- Questions?

