
Assisting Cache Replacement by
Helper-Threading for MPSoCs

Masaaki Kondo
Graduate School of Information Science and Technology,
The University of Tokyo

MPSoC2015 1

Background

 Increasing number of cores in MPSoCs
 No more increase in clock speed

 Performance improvement by parallel processing

 Not easy to fully utilize all the available cores

 Typically with a shared last-level cache
 Effective use in cache area

 Destructive performance degradation by cache conflict
• Multiple threads contend cache area due to difference of their

access patterns

MPSoC2015 2

CAggravated with increasing number of cores

Cache Conflict

MPSoC2015

Core-0: A A

Core-1: … B C D E

LRU MRU

: Core-0 data

AA BA CB DCBA EDCBA

Core-0 data with
high temporal

locality
is evicted!!

: Core-1 data

3

 Example memory access sequence

Core-0 Core-1

Shared Cache

Objective and Strategy

MPSoC2015 4

 Alleviating the effect of conflict in shared LLC
 Lines with high-locality keep them in cache

 Lines with low-locality evict them from cache ASAP

 Managing cache lines by helper threading
 Flexible cache line management by software

• Locality prediction and replacement control for cache lines

 Making good use of idle cores with helper threading
• Some cores tend to be idle in manycore SoCs due to lack of

parallelism or smaller number of tasks than cores

Helper Thread Assisted Cache Replacement

 Required steps

 Helper thread (HT) obtains cache miss info. from cache

• Access MSHR: Miss State Holding Register via Memory-mapped I/O

 HT predicts data locality for each missed line

• Flexibly implemented by software demonstrate 3 prediction methods

 HT stores predicted result and HW manages replacement based on it

• RDAT: Reusable Data Address Table

Keeps addresses (pages) with high data locality

Insert lines to MRU position for next line-fill

• NDAT: Non-Reusable Data Address Table

Keeps addresses (pages) with no data locality

Insert lines to LRU position for next line-fill

MPSoC2015 5

LRUMRU

RDAT NDAT

Baseline Architecture and Control Flow

MPSoC2015 6

CT: Computing Thread
HT: Helper Thread
MSHR: Miss State Holding
Register

HT CT

Cache misses

Stores cache
miss info.

Obtaining
cache miss

info.

Prediction
of data
locality

Instruct cache
management

policy

Private cache is uses as SPM
to prevent LLC pollution by HT

1
CT

Replacement

Replacement Control
 Selecting line insert position based on RDAT and NDAT

MPSoC2015 7

v page #

RDAT

=?
=?
=?
=?
=?
=?

v page #

NDAT

=?
=?
=?
=?
=?
=?

Memory

Miss address
page

M
em

or
y

A
cc

es
s

LRUMRU

Data Fill

Locality Prediction Algorithms

 Profile-based method
 Data-locality is profiled in advance
 Stores only non-reusable data addresses to NDAT

 Stream-based method
 Detect stream accesses dynamically by access history
 Stores addresses of stream data to NDAT

(data with stream accesses is not likely to have locality)

 Virtual-set monitoring method
 Chasing reusability of evicted lines using virtual-set
 If an evicted line is accessed shortly, stores its address to RDAT
 If evicted even from virtual set, stores its address to NDAT

MPSoC2015 8

Virtual-Set Monitoring Method

MPSoC2015 9

 Monitors evicted lines from LLC
 For only a few sample sets
 HT emulates virtually extended

LRU stacks for the sample sets
 Check the reusability of lines

by the virtual-set

 Virtual hit at the middle of LRU stack:
high data-locality

 Register entire-page to RDAT
 Virtual hit at the end of LRU stack:

middle data-locality
 Delete corresponding page from

NDAT and RDAT
 Evicted from virtual-set:

low data-locality
 Register entire-page to NDAT

1. // allocating virtual-set structure in the memory
2. VirtualSet = Create_VirtualSet(SIZE);
3. while (computing-threads-running) {
4. // obtain cache miss info. from MSHR
5. curMSHR = Read_current_MSHR();
6. if !(curMSHR)
7. continue;
8. // check if it hits in the virtual set
9. wayNum = isHit(curMSHR, VirtualSet);
10. // check its locality and set page num. to NDAT/RDAT
11. if (!wayNum)
12. set_NDAT_entry(get_page(curMSHR));
13. else if isReusableWayNo(wayNo)
14. set_RDAT_entry(get_page(curMSHR));
15. else
16. delete_NDAT_RDAT(get_page(curMSHR));
17. }

MRU LRU
virtual-sets

virtually hit in
this range

virtually hit in
this range

(delete from
NDAT/RDAT)

evicted from
virtual- set

to RDAT

to
 N

D
A

T

Evaluation Environment

 MARSSx86 multicore simulator

 Job mixes with SPEC CPU2006 (1-program/core)
 MA-high: job mix of memory intensive applications

 MA-low: job mix of CPU intensive applications

 MA-mix: job mix of both memory and CPU intensive applications

MPSoC2015

Parameter Value

L1 D/I-Cache 32K, 8-way, 64Bline, 2-cycle latency

L2 Cache 1MB,8-way, 64Bline, 9-cycle latency

Main Memory 200-cycle latency

Executing instructions 100M inst. for all threads (FastForward:1B inst.)

number of cores 5 (4-application threads + 1-helper thread)

10

Configuration

MA-high MA-mixMA-low

Result (4-Compute + 1-Helper Threads)

MPSoC2015 11

11.5% 10.6%

5.3%

Summary

 Cache data management by helper threading
 HT predicts data-locality and set hints to cache controller

 Very flexible since we can implement multiple management
algorithms by software modification

 Performance (weighted speedup) improvement up to 11.5%

 Future work
 Develop more accurate locality prediction algorithm

 Select appropriate algorithm depending on a job mix

 Compare with purely hardware-based counterpart

MPSoC2015 12

