

Eighteen Years Ago 05/II/I997

Deep Blue

A classic example of application-specific system design comprised of an IBM supercomputer with 480 custom-made VLSI chess chips, running massively parallel search algorithm with highly optimized implementation.

Deep Learning and Artificial Intelligence Economist Rise of the machines

Deep Learning

Deep Convolutional Neural Networks

Big Data

Storage	$\cdot>2000 \mathrm{~PB}$
Processing	$\cdot 10-100 \mathrm{~PB} /$ day
Webpages	$\cdot 100 \mathrm{~b}-1000 \mathrm{~b}$
Index	$\cdot 100 \mathrm{~b}-1000 \mathrm{~b}$
Update	$\cdot 1 \mathrm{bb}-10 \mathrm{~b} /$ day
Log	$\cdot 100 \mathrm{~TB} \sim 1 \mathrm{~PB} /$ day

Heterogeneous Computing

1993 world \#I
Think Machine CM5/I024 131 GFlops

2013
Samsung Note 3 smartphone (Qualcomm SnapDragon 800) 129 Gflops

History is repeating itself!

Deep Learning: Two Step Process

Supercomputers used for training

And then deploy the trained models everywhere!

Deep Learning：Training

Big data＋Deep learning＋High performance computing＝ Intelligence

Big data＋Deep learning＋Heterogeneous computing＝ Success

Insights and Inspirations

多算胜少算不胜

孙子 计篇（Sun Tzu，544－496 BC）

More calculations win，few calculation lose

元元本本殚见洽闻
班固 西都赋（Gu Ban，32－92 AD）

Meaning the more you see the more you know

明足以察秋毫之末

孟子梁惠王上（Mencius，372－289 BC）
ability to see very fine details

Project Minwa（敏娲）

－Minerva＋Athena＋女娲
－Athena：Goddess of Wisdom，Warfare， Divine Intelligence，Architecture，and Crafts
－Minerva：Goddess of wisdom，magic， medicine，arts，commerce and defense
－女娲：抟土造人，炼石补天，婚姻，乐器
World＇s Largest Artificial Neural Networks
＊Pushing the State－of－the－Art
＊～100x bigger than previous ones
＊New kind of Intelligence？

Hardware／Software Co－design

－Stochastic gradient descent（SGD）
－High compute density
－Scale up，up to 100 nodes
－High bandwidth low latency

－ 36 nodes， 144 GPUs，6．9TB Host，I．7TB Device

－0．6 PFLOPS
－Highly Optimized software stack
－RDMA／GPU Direct
－New data partition and communication strategies

Speedup (wall time for convergence)

Validation set accuracy for different numbers of GPUs

Data Augmentation

Never have enough training examples！

Key observations
－Invariant to illuminant of the scene
－Invariant to observers

Augmentation approaches
－Color casting
－Optical distortion
－Rotation and cropping etc
＂见多识广＂

The Color of the Dress

And the Color Constancy

Key observations
－Invariant to illuminant of the scene
－Invariant to observers

Augmentation approaches
－Color casting

－Optical distortion
－Rotation and cropping etc
＂Inspired by the color constancy principal． Essentially，this＇forces＇our neural network to develop its own color constancy ability．＂

Data Augmentation

Possible variations

Augmentation	The number of possible changes
Color casting	68920
Vignetting	1960
Lens distortion	260
Rotation	20
Flipping	2
Cropping	82944 (crop size is 224×224, input image size is 512×512)

The Deep Image system learned from ~2 billion examples, out of $\mathbf{9 0}$ billion possible candidates.

Data Augmentation vs. Overfitting

Examples

Some hard cases addressed by adding our data augmentation．

Multi－scale Training

－Same crop size，different resolution
－Fixed－size $224 * 224$
－Downsized training images
－Reduces computational costs
－But not for state－of－the－art
－Different models trained by different image sizes
＂明查秋毫＂
－Multi－scale models are complementary
－Fused model：
－ 256×256 ：top－5 7.96%
－5I 2×5 I2：top－5 7.42%

Multi-scale Training

Single Model Performance

- One basic configuration has 16 layers

- The number of weights in our configuration is 212.7 M
- About 40% bigger than VGG's

Team	Top-5 val. error
VGG	8.0%
GoogLeNet	7.89%
BN-Inception	5.82%
MSRA, PReLU-net	5.71%
Deep Image	$\mathbf{5 . 4 0 \%}$

Robustness

Robustness

	Rank	Score	Class
	01	0.3687	king crab
	02	0.2159	hotdog
	03	0.1031	pizza
	04	0.0575	burrito
	05	0.0406	bagel
	06	0.0307	Dungeness crab
	07	0.0234	crayfish
	08	0.0133	goldfish
	09	0.0114	American lobster
	10	0.0114	potpie
		0.0094	
	12	0.0089	carbonara
	13	0.0085	plate
	14	0.0079	ice cream
	15	0.0065	orange
	16	0.0064	butcher shop
	17	0.0063	corn
	18	0.0062	butternut squash
	19	0.0046	sea cucumber
	20	0.0045	mashed potato
			D_{2}. Ren Was @ MPSoc)

Benchmark Results

Benchmark	Measurement	Previous Best	Deep Image
Caltech CUB200-2011	Top-1 accuracy	85.4%	$\mathbf{8 5 . 6 \%}$
Oxford Flowers	Top-1 accuracy	95.3%	$\mathbf{9 8 . 7} \%$
Oxford-IIIT Pets	Top-1 accuracy	91.6%	$\mathbf{9 3 . 1} \%$
FGVC-aircraft	Top-1 accuracy	81.5%	$\mathbf{8 5 . 2} \%$
MIT Indoor Scene	Top-1 accuracy	81.1%	$\mathbf{8 2 . 4 \%}$
ImageNet ILSVRC	Top-5 error	4.82%	$\mathbf{4 . 5 4 \%}$

ImageNet ILSVRC Results

Team	Date	Top-5 test error
GoogLeNet	2014	6.66%
Deep Image	$01 / 12 / 2015$	5.98%
Deep Image	$02 / 05 / 2015$	5.33%
Microsoft	$02 / 05 / 2015$	4.94%
Google	$03 / 02 / 2015$	4.82%
Deep Image	$05 / 10 / 2015$	$\mathbf{4 . 5 8 \%}$

Major Differentiators

- Customized built supercomputer dedicated for DL
- Simple, scalable algorithm + Fully optimized software stack
- Larger models
- More Aggressive data augmentation
- Multi-scale, include high-resolution images

Scalability + Insights

and push for extreme

Deep Learning: Deployment

Big data + Deep learning + High performance computing = Intelligence

$$
\begin{aligned}
& \text { Big data + Deep learning + Heterogeneous computing = } \\
& \text { Success }
\end{aligned}
$$

Owl of Minwa (敏鸮)

Models trained by supercomputers
Trained models will be deployed in many ways
data centers (cloud), smartphones, and even wearables and loTs
OpenCL based, light weight and high performance
DNNs everywhere !

Supercomputers

Datacenters
Tablets, smartphones

knowledge, wisdom, perspicacity and erudition

DNNs Everywhere

Offline Mobile DNN App

Cloud Computing: What's Missing?

Operation	Energy, $\mathbf{p J}$	Relative cost
16b Int ADD	0.06	1
16b Int MULT	0.8	13
16b FP ADD	0.45	8
16b FP MULT	1.1	18
32b FP ADD	1.0	17
32b FP MULT	4.5	80
Register File, 1kB	0.6	10
L1 Cache, 32kB	3.5	58
L2 Cache, 256kB	30.2	500
on-chip DRAM	160	2667
DRAM	640	10667
Wireless transfer	60000	1000000

Bandwidth?
Latency?
and
Power consumption?
*Artem Vasilyev: CNN optimizations for embedded systems and FFT
Moving data around is expensive, very expensive!

Cloud Computing: What's Missing?

What's Next?

Dedicated Hardware + Heterogeneous Computing

Heterogeneous Computing

"Human mind and brain is not a single general-purpose processor but a collection of highly specialized components, each solving a different, specific problem and yet collectively making up who we are as human beings and thinkers." - Prof. Nancy Kanwisher

Vision Processing Power Efficiency

- Wearables will need 'always-on' vision
- With smaller thermal limit / battery than phones!
- GPUs have x10 imaging power efficiency over CPU - GPUs architected for efficient pixel handling
- Dedicated Hardware/DSPs can be even more efficient - With some loss of generality

- Mobile SOCs have space for more transistors
- But can't turn on at same time = Dark Silicon
- Can integrate more gates 'for free' if careful how and when they are used

Potential for dedicated sensor/vision silicon to be integrated into Mobile Processors But how will they be programmed for PORTABILITY and POWER EFFICIENCY?

OpenCL Ecosystem

Intelligent Internet of Things

