

Dr. Ren Wu

- Independent researcher
- Distinguished Scientist, Baidu
- HSA Chief Software Architect, AMD
- PI, HP Labs CUDA Research Center
- World Computer Xiangqi Champion
- Al expert
- Heterogeneous Computing expert
- Computational scientist

Eighteen Years Ago - 05/11/1997

Dr. Ren Wu @ MDSoC

Deep Blue

A classic example of application-specific system design comprised of an IBM supercomputer with 480 custom-made VLSI chess chips, running massively parallel search algorithm with highly optimized implementation.

Storage • >2000PB Processing • 10-100PB/day Webpages • 100b-1000b Index • 100b-1000b Update • 1b-10b/day Log • 100TB~1PB/day

History is repeating itself!

Deep Learning: Training

Big data + Deep learning + High performance computing = Intelligence

Big data + Deep learning + Heterogeneous computing = **Success**

Dr. Ren Wa @ MDSoC

Insights and Inspirations

多算胜少算不胜

孙子 计篇 (Sun Tzu, 544-496 BC)

More calculations win, few calculation lose

元元本本殚见洽闻

班固 西都赋(Gu Ban, 32-92 AD)

Meaning the more you see the more you know

明足以察秋毫之末

孟子梁惠王上 (Mencius, 372-289 BC)

ability to see very fine details

Project Minwa (敏娲)

- Minerva + Athena + 女娲
- Athena: Goddess of Wisdom, Warfare,
 Divine Intelligence, Architecture, and Crafts
- Minerva: Goddess of wisdom, magic, medicine, arts, commerce and defense
- 女娲: 抟土造人, 炼石补天, 婚姻, 乐器

World's Largest Artificial Neural Networks

- Pushing the State-of-the-Art
- ❖ ~ I00x bigger than previous ones
- * New kind of Intelligence?

Hardware/Software Co-design

- Stochastic gradient descent (SGD)
 - High compute density
- **⇒** GPUs
- Scale up, up to 100 nodes
 - High bandwidth low latency | Infiniband
- 36 nodes, 144 GPUs, 6.9TB Host, 1.7TB Device
 - 0.6 PFLOPS
- Highly Optimized software stack
 - RDMA/GPU Direct
 - New data partition and communication strategies

Data Augmentation

Never have enough training examples!

Key observations

- Invariant to illuminant of the scene
- Invariant to observers

Augmentation approaches

- Color casting
- Optical distortion
- Rotation and cropping etc

"见多识广"

The Color of the Dress

And the Color Constancy

Key observations

- Invariant to illuminant of the scene
- Invariant to observers

Augmentation approaches

- · Color casting
- Optical distortion
- Rotation and cropping etc

"Inspired by the color constancy principal.
Essentially, this 'forces' our neural network to
develop its **own color constancy ability**."

Dr. Ren Wu @ MPSal

Data Augmentation

Possible variations

Augmentation	The number of possible changes	
Color casting	68920	
Vignetting	1960	
Lens distortion	260	
Rotation	20	
Flipping	2	
Cropping	82944(crop size is 224x224, input image	
	size is 512x512)	

The Deep Image system learned from ~2 billion examples, out of 90 billion possible candidates.

Dr. Ren Wu @ MDSOC

Examples

Bathtub

Indian elephant

Isopod

Ice bear

Some hard cases addressed by adding our data augmentation.

Multi-scale Training

- Same crop size, different resolution
 - Fixed-size 224*224
- Downsized training images
 - Reduces computational costs
 - But not for state-of-the-art
- Different models trained by different image sizes

- High-resolution model works
 - 256x256: top-5 7.96%
 - 512x512: top-5 7.42%
- Multi-scale models are complementary
 - Fused model:

6.97%

"明查秋毫"

Single Model Performance

One basic configuration has 16 layers

- The number of weights in our configuration is 212.7M
 - About 40% bigger than VGG's

Team	Top-5 val. error
VGG	8.0%
GoogLeNet	7.89%
BN-Inception	5.82%
MSRA, PReLU-net	5.71%
Deep Image	5.40%

Dr. Ren Wu @ MDSoC

Dr. Ren Wu @ MPSol

14

Benchmark Results

Benchmark	Measurement	Previous Best	Deep Image
Caltech CUB200-2011	Top-1 accuracy	85.4%	85.6%
Oxford Flowers	Top-1 accuracy	95.3%	98.7%
Oxford-IIIT Pets	Top-1 accuracy	91.6%	93.1%
FGVC-aircraft	Top-1 accuracy	81.5%	85.2%
MIT Indoor Scene	Top-1 accuracy	81.1%	82.4%
ImageNet ILSVRC	Top-5 error	4.82%	4.54%

ImageNet ILSVRC Results

Team	Date	Top-5 test error
GoogLeNet	2014	6.66%
Deep Image	01/12/2015	5.98%
Deep Image	02/05/2015	5.33%
Microsoft	02/05/2015	4.94%
Google	03/02/2015	4.82%
Deep Image	05/10/2015	4.58%

P. W. @ MACA

Major Differentiators

- Customized built **supercomputer** dedicated for DL
- Simple, scalable algorithm + Fully optimized software stack
- Larger models
- More Aggressive data augmentation
- Multi-scale, include **high-resolution** images

Scalability + Insights and push for extreme

Deep Learning: Deployment

Big data + Deep learning + High performance computing = **Intelligence**

Big data + Deep learning + Heterogeneous computing = **Success**

Dr. Ren Wu @ MDSoC

Owl of Minwa (敏鸮)

Models trained by supercomputers Trained models will be deployed in many ways data centers (cloud), smartphones, and even wearables and IoTs

OpenCL based, light weight and high performance

DNNs everywhere!

Supercomputers

Datacenters

Tablets, smartphones

knowledge, wisdom, perspicacity and erudition

Offline Mobile DNN App

- Image recognition on mobile device
- Real time and no connectivity needed
- directly from video stream, what you point is what you get
- Everything is done within the device
- OpenCL based, highly optimized
- Large deep neural network models
- Thousands of objects, flowers, dogs, and bags etc
- Unleashed the full potential of the device hardware
- Smart phones now, Wearables and IoTs tomorrow

Cloud Computing: What's Missing?

Operation	Energy, pJ	Relative cost
16b Int ADD	0.06	1
16b Int MULT	0.8	13
16b FP ADD	0.45	8
16b FP MULT	1.1	18
32b FP ADD	1.0	17
32b FP MULT	4.5	80
Register File, 1kB	0.6	10
L1 Cache, 32kB	3.5	58
L2 Cache, 256kB	30.2	500
on-chip DRAM	160	2667
DRAM	640	10667
Wireless transfer	60000	1000000

Bandwidth? Latency? and Power consumption?

*Artem Vasilyev: CNN optimizations for embedded systems and FFT

Moving data around is expensive, very expensive!

Heterogeneous Computing

"Human mind and brain is not a single general-purpose processor but a collection of highly specialized components, each solving a different, specific problem and yet collectively making up who we are as human beings and thinkers." - Prof. Nancy Kanwisher

Dr. Ren Wu @ MDSaC

Vision Processing Power Efficiency

- Wearables will need 'always-on' vision
 With smaller thermal limit / battery than phones!
- GPUs have x10 imaging power efficiency over CPU
 GPUs architected for efficient pixel handling
- Dedicated Hardware/DSPs can be even more efficient
 With some loss of generality
- Mobile SOCs have space for more transistors
 - But can't turn on at same time = Dark Silicon
 - Can integrate more gates 'for free' if careful how and when they are used

Potential for dedicated sensor/vision silicon to be integrated into Mobile Processors

But how will they be programmed for

But how will they be programmed for PORTABILITY and POWER EFFICIENCY?

© Copyright Khronos Group 2015 - Page 44

CH RON OS

