

					Jeffrey Vetter, ORNL Robert Schreiber, HP Labs Trevor Mudge, University of Mici	
	SRA M	DRA M	NAND Flash	PCRA M	STTRA M	ReRAM
Data Retention	N	Ν	Y	Y	Y	Y
Cell Size (F ²)	50-200	4-6	2-5	4-10	8-40	4
Minimum F demonstrated (nm)	14	25	16	20	28	27
Read Time (ns)	< 1	30	Slow	Medium	Fast	Medium
Write Time (ns)	< 1	50	Slow	Medium	Fast	Medium
Number of Rewrites	1016	1016	10 ⁴ -10 ⁵	108-1010	1015	108-1012
Read Power	Low	Low	High	Low	Medium	Medium
Write Power	Low	Low	High	High	Medium	Medium
Power (other than R/W)	Leakage	Refresh	None	None	None	Sneak
Maturity						
		http://ft.ornl.gov	/trac/blackcomb			

Conclusion

- Emerging NVM has many benefits for new memory architecture design
 - High-density, lower standy-power, no refresh power
- Write overhead and endurance are challenges to be addressed
 - Write delay/energy overhead: hybrid cache, wear-limiting
 - Endurance: Wear-leveling
- Nonvolatility provides new opportunities for novel designs.
 - New checkpointing device
 - Persistent memory support
 - \blacksquare NVM processor
 - Any other new opportunities?

