
7/7/15

1

Memory Persistence:
A New Dimension in

Memory System Design
Jishen Zhao

Computer Engineering, UC Santa Cruz

July, 2015

Memory
Fast memory interface

http://depositphotos.com/3735495/stock-photo-Kids-writing-in-sand.html http://www.bbc.co.uk/news/uk-england-leeds-15157345

Storage
Persistence

Fast Memory Interface + Persistence ?

2

7/7/15

2

3

New Design Opportunities with NVRAM

STT-RAM, PCM,
ReRAM, NVDIMM,
Battery-backed
DRAM, etc.

•  Allow in-memory data structures to become permanent immediately
•  Demonstrated 32x speedup compared with using storage devices

[Condit+ SOSP’09, Volos+ ASPLOS’11, Coburn+ ASPLOS’11,
Venkataraman+ FAST’11]

CPU
DRAM

Disk/Flash

Memory
Load/store
Not persistent

Storage
Fopen, fread, fwrite, …
Persistent

CPU
NVRAM

Load/store
Persistent

Persistent memory

Dry It -- Memory Persistence

(or copy-on-write)

Persistence
•  Used to be a property of storage systems
•  Now needs to be maintained in the memory system

4

7/7/15

3

5

A New Dimension in Memory System Design

Large
Capacity

High
Performance

Low
Power

Resiliency

Low
Cost

Traditional Memory
Design Targets

Resiliency

Persistence

High
Performance

Low
Power Large

Capacity

Low
Cost

A New Shape of
Memory Design Targets

•  Can’t just use an in-memory system – No persistence support
- In-place updates to nonvolatile media may be interrupted without
 completion in the event of power loss or system crashes
- Interrupted writes could leave partially overwritten data or missing
 references

•  Cant’ just use a storage system – Not optimized for memory
- Overhead from database or file system interfaces, which assume
 and are optimized for slow, block-addressable devices
- Not optimized for fast, byte-addressable memory with a load/store
 interface

6

Maintaining Memory Persistence
Root

A

B C D

Root

A

B C D
C’ D’

NVRAM Memory
Barrier

Root

A

B C D
C’ D’

7/7/15

4

Performance Overhead of
Logging/Copy-on-Write

7

NVRAM
C’ C

Ver N Ver N-1

- Log (logging)
- Temporary buffer
(copy-on-write) Original data

Persistent

Source of overhead – Multiversioning
Ø  Two writes per one data update
Ø  The memory barrier disables write reordering

Memory traffic increased by 120% !

Performance degradation by 3.3x

What Can We Leverage From Hardware
Software’s view of

memory system

Page belonging to process

Page not belonging to process

Hardware’s view of
memory system

Main Memory

…
Last-level Cache

(LLC)

0x00000000

0x00ffffff

…

L1 Cache L1 Cache

L2 Cache

Core Core …

- A flat address space
 - Pages

- Not flat, a hierarchy
 - Cache lines

Transparent
to Software

8

7/7/15

5

•  How does a cache hierarchy work?
•  A multiversioned system by nature!

Leveraging Caching

…
L1 Cache L1 Cache

Core Core …

Main Memory

Last-level Cache
(LLC) D(value 1)

D(value 0)

D(value 2)

Data D(new value)

9

Hardware-based Persistent Memory

A persistent memory hierarchy
•  Updates directly overwrite original data
•  No need for logging or copy-on-write

 NVRAM Memory
C D

NVRAM Cache

C’ D’ Ver N

Ver N-1 The Same Address
(Original Data) Pe

rs
is

te
nt

 M
em

or
y

10

Key idea: Maintain multiversioning by hardware
Ø  Leverage caching schemes to automatically maintain multiversioning

Ø  Two levels of NVRAM (phyiscally or logically)

7/7/15

6

A transaction-based program
Issued in order:
TA = {A1, A2, A3}
TB = {B1, B2}

NVRAM Cache

B2

NVRAM Memory

Re-enable Write Reordering

Higher-level
CPU Caches

Cache
Flush

Reordered writes

•  Appeared in-order writes
 - TA commits before TB
•  Allow write reordering

(no software barrier)
 - Reorder cache writebacks
 - Reorder writes by memory controller
•  Write order control
 - Mark each NVRAM cache block
 - Flush higher-level CPU caches upon

transaction commits – Very fast!
 - Change the state of NVRAM cache

blocks in order

Reordered writes

A1 A2 A3 B1

A1 A2 A3

Pe
rs

is
te

nt

M
em

or
y B1 B2

11

Performance Results

12

0%	

20%	

40%	

60%	

80%	

100%	
Goal 100%

Native
(NVRAM w/o
Persistence)

Best Prior
Persistent

Memory

Leveraging
Caching
Schemes

3.3x 3.1x

7/7/15

7

Summary

13

Issue

Memory Controller Design

Opportunity
Hardware-based

Persistence Support

Persistence

High
Performance

Low
Power Large

Capacity Resiliency

Low
Cost

Memory Persistence and Performance

Acknowledgments

Coauthors of the paper:
•  Kiln: Closing the Performance Gap Between Systems With

and Without Persistence Support. Sheng Li (Intel), Doe Hyun
Yoon (Google), Yuan Xie (UCSB), Norm Jouppi (Google).
MICRO’13. (Best Paper Honorable Mention Award)

14

7/7/15

8

Memory Persistence:
A New Dimension in

Memory System Design
Jishen Zhao

Computer Engineering, UC Santa Cruz

July, 2015

