Trading Off Lifetime, Fault-tolerance, and Power Consumption in Real-time MPSoC

Jacopo Panerati*, Samar Abdi $^{\dagger},$ and Giovanni Beltrame*

* École Polytechnique de Montréal, † Concordia University

MPSoC 2015 - Ventura Beach, CA, USA

POLYTECHNIQUE MONTRÉAL	Introduction	System Model	Methodology	Case Study	Conclusions
Outline					
1 Introduction					
O System Model					
8 Methodology					
Case Study					
6 Conclusions					
					A second s
J. Panerati <i>et al.</i> – Liferime, Fault-tolerance, Power					3/20 – mistlab.ca
POLYTECHNIQUE MONTRÉAL	Introduction	System Model	Methodology	Case Study	Conclusions
Motivation					

- Aerospace: high-frequency of Single Event Upsets
- Usually critical systems, requiring high availability
- Classical countermeasures:
 - Modular redundancy
 - Shielding
- Issues:
 - Cost
 - Extra hardware \implies more power \implies higher temperature \implies shorter lifetime
- What is a good trade-off?

Research Goal

- Reliability and fault-tolerance are essential for critical, autonomous systems
- We propose a methodology to quantify, and maximize, reliability in the presence of transient errors for MPSoC
- Fault-tolerance is traded-off with power consumption
- We target homogeneous multi-processor systems
 - Goal: keep a certain level of reliability/lifetime with varying fault rates

 POLYTECHNIQUE MONTRÉAL
 Introduction

 Introduction

 System Model

 Methodology

 Case Study

 Conclusions

J. Panerati *et al.* – Liferime, Fault-tolerance, Power

System Model

- Multiprocessor System-on-Chip (we're in the right place!)
- Identical processing elements (PEs) w/ private caches
- Voltage scaling: a set of operating points for each PE

Fault models

- Transient faults (SEUs) w/ data scrubbing
- Permanent Faults
- Total Ionizing Does (TID) effects

J. Panerati et al. – Liferime, Fault-tolerance, Power

POLYTECHNIQUE MONTRÉAL

Introduction System Model Methodology Case Study Conclusions

. . .

Real-Time Application Model

- A set of tasks τ₁, τ₂..., τ_m is executed
- Each task has a WCET associaded with the slowes operating point of a PE
- The speedup is proportional to the frequency increase

$$WCET_{OP(f_i,-)} = WCET_{OP(f_0,-)} \cdot \frac{f_0}{f_i}$$

 Precedences via a Directed Acyclic Graph (DAG)

Single Event Upsets

We use probability theory to model the occurrence of faults. SEUs are caused by high-energy particles:

- Whose impacts are independent.
- Which happen at a constant average rate.
- The rate is mission phase-dependent.

Panerati et al. – Liferime, Fault-tolerance, Power

The number of impacts in a scrubbing period of length T is a Poisson rand variable.

POLYTECHNIQUE MONTRÉAL

Introduction System Model Methodology Case Study Conclusions

Permanent Faults

- We consider the most common wear-out phenomena: hot carriers, negative bias temperature instabiliti (NBTI), time dependent dielectric breakdown (TDDB), electromigration, and self-heating
- Hypothesize that Mean Time To Fail (MTTF) has an exponential relationship with PE load (utilization *U*)

Power Model

- Total power = sum of each PE
- Standard model with capacitance, frequency, activation factor


```
P = \alpha \cdot C \cdot V^2 \cdot f
```


Methodology

Task Mapping

- Enumerate all possible mappings
- Prune the design space according to WCET and slowest operating point
- Compute the utilization for each mapping

Power, Fault-tolerance, and Lifetime Optimization

- Compute the total energy according to utilization and operating points
- Utilizations reflect exponentially on the probability of system-wide error
 - Slack provides fault-tolerance
- We consider the effect of utilization on lifetime and the failure of multiple resources for lifetime optimization

J. Panerati <i>et al</i> . – Liferime, Fault-tolerance, Power						13/20 – mistlab.ca
POLYTECHNIQUE MONTRÉAL	Introduction	System Model	Methodology	Case Study	Conclusions	
Outline						
Introduction						
System Model						
Methodology						
4 Case Study						
5 Conclusions						
						and a la

Case Study (actually a toy example)

- Dual core, four tasks, each PE has four operating points
- Implementation on a Virtex 4 board
 - 16.5 faults/day in Low Earth Orbit (LEO)
 - 62 faults/day in Highly Elliptical Orbit (HEO)

			C	perating Point	
			OP_1	OP_2	OP_3
			$f_1 = 600 \text{MHz}$	$f_2 = 1.2 \text{Ghz}$	$f_3 = 1.6 \text{Ghz}$
		А	8.0	4.0	3.0
-	Task	В	4.0	2.0	1.5
		С	8.0	4.0	3.0
		D	12.0	6.0	4.5

POLYTECHNIQUE MONTRÉAL

Introduction System Model Methodology Case Study Conclusions

Results

- Overall 29 acceptable points, 15 different points shown here
- Trade-offs for utilization (lifetime), power efficiency, or fault-tolerance

Average Utilization	Best Power Consumption	Systen LEO	n Errors HEO
0.600	30.00W	12	42
0.650	27.70W	13	45
0.675	26.55W	14	47
0.700	25.40W	15	49
0.725	24.25W	15	50
0.800	20.80W	16	56
0.850	27.30W	17	59

15/20 – mistlat

Results

• Design space as an *n*-dimensional space of utilization levels, with reliability and power consumption design points

Conclusions

- Methodology for scheduling real-tiem tasks in homogeneous MPSoCs
- Energy, fault-tolerance, and lifetime-aware

Future Work

- Use a detailed temperature model instead of the utilization proxy
- Extend to the effects of interconnects
- More detailed modelling of permanent faults

