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Radio Astronomy 

Tidal interactions in the M81 group 
stellar light distribution                        21cm HI distribution 

Image courtesy of NRAO/AUI  

Interferometry 

Westerbork Synthesis Radio Telescope: 
14 dishes, D=25m, B=3km      [NL,1956] 

2-element interferometer.  
Output of the correlator: 
 
 
with ν the observation frequency 
and * denoting complex conjugation 
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Van Cittert–Zernike theorem [1934-38] 

Adding geometry (assuming “narrow field”): 
 
 
 
 
where (l, m) are sky-image coordinates 
and (u, v) are coordinates of the base-line vector 

sky intensity 

solid angle 

speed of light 

base line vector, 
separating the 2 antennae 
 

correlator output 

2D Fourier transform! 

[1], [2], [3] 

Van Cittert–Zernike theorem [1934-38] 

In principle: 
      

(u, v) coverage 
(A, φ) at (u,v) 

(l,m) image 
pixel intensity  
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W-projection, W-snapshot [2008/12, Cornwell et al] 

However, Van Cittert–Zernike theorem “wide-field”  

Visibilities are 3D (u, v, w), due to earth’ curvature (Fresnel diffraction). 
 
Choose as convolution function 
and let  G~(u, v, w) be the Fourier transform of G(l, m, w). 
 
Then, using the Fourier convolution theorem (W-projection): 
 
 
W-snapshot  
= W-projection applied piecemeal to a series of snapshots. 
 

[4], [5] 

Deconvolution (CLEAN, Högbom 1974) 

I(l, m)       V(u, v, w=0)                            V(u, v, w) 

Can be computed straightforwardly, but cannot be inverted easily, 
because V(u, v, w) provides only a finite number of noisy samples  
(and a variety of other reasons, including antenna beam forms). 
 
CLEAN (next slide) is an iterative deconvolution algorithm. 
 
(Under certain conditions CLEAN converges to a solution that is the 
least-squares fit of the FFT algorithm.) 
 
  

FFT **G~(u, v, w)  

[1], [3] 
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Imaging (W-projection/snapshot + CLEAN) 

V(u,v,w) V(u,v,w=0) 

residual 
image 

point 
source 

sky model 

V(u,v,w) V(u,v,w=0) 

+ + V(u,v,w) Image 
I(l,m) 

I-FFT 

FFT 

GT()× 

**G~() 

** γ×PSF 
(dirty beam) 

**clean beam 

extract 

update 

−

−

image [real] visibilities [complex] 

3D 2D 2D 

3×10 
iterations 

100× 

(W-snapshot implicit) 

SKA1-mid [South Africa]: science in 2020 

photograph 

artist impression 

SKA Organisation 
/Swinburne Astronomy Productions 

Towards a Square Kilometer Array 

[6] 
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Imaging: compute load for SKA1-mid  

•  #operations/visibility depends on #snapshots 
•  calibration loop (3×) around imaging loop 
•  data type: double|single precision, floating|fixed point? 

quantity unit 10log note 
# base lines 5.5 22 ×(#dishes + #stations)2 = (2×254)2  

dump rate s-1 1 (integration time = 0.08s) -1 

observation time s 3 
# channels 5 “image cube” for spectral analysis 
# visibilities / observation 14.5 = input to imaging (≈ 1016 Byte) 
# ops /visibility /iteration 4.5 convolution, matrix multiply, (I)FFT 
# major iterations 1.5 (3×calibration) × (10×major) 
# ops /observation 20.5 
# ops /sec Hz 17.5 ≈ 1 exa-op / 1 exaflop 

[7], [8], [9] 

Imaging: where is the parallelism? 

Concerns on efficiency: 
•  data sets are large (≈ 1016 Bytes for visibilities), 
•  and some algorithms are low on compute intensity (high i/o) and or irregular,

(e.g. FFT typically 20% efficiency on a CPU | GPU), 
•  Hence manual optimization of code likely essential. 
 

quantity unit 10log note 
# ops / sec Hz 17.5    = imaging compute load 
margin (for inefficiencies) 0.5 very aggressive / optimistic 
machine flop 18 = 1 exaflop 
# clock frequency Hz 9 
# channels in parallel 5 J, all independent data streams! 
simd ? tiles ? pipelining 4 L, challenging! 
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EXAflops in 2015? 

•  net SKA1-mid computation load “2020” versus 
•  gross (peak) compute performance “2015” 

Piz Daint (CH) 
Gray XC30,  
Tesla® K20X GPUs 
Amdahl: 0.03B/flop 

SKA1-mid 

[10] 

EXAflops in 2020? 

A huge spread per application in achievable FLOPs and GFLOP/Watt! 

Nvidia 2020 [7nm]: 
1 exaflop 
= 76800 nodes 
×  8192 DP ALU/node 
×  (add + mul)/cycle 
×  1GHz 

[11] 



08/06/2015 

8 

Astronomical workloads 

Exaflop algorithms? 
•  Can we expect algorithm innovation beyond w-snapshot+CLEAN? 
•  Trade lower hot FLOPs (w-snapshot) vs higher cool FLOPs (w-projection)? 
•  Where can we afford single precision? (Fixpoint?) 

  

Exaflop machines? 
•  Will GPUs be the obvious accelerator? or will FPGAs or DSPs surprise us? 
•  Amdahl memory ratio (Byte/flop)?   

  

Exaflop mapping? 
•  Which forms of parallelism for highest efficiency? (Next to channel ||) 
•  What levels of efficiency are achievable? 

  

Exaflop requirements? 
•  When will exaflop SKA1 power consumption be affordable? 
•  Will SKA2 (>100x) … ? 
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