

Higher reliable multiprocessor system for embedded systems considering power source fluctuation

Yoshinori TAKEUCHI Graduate School of Information Science and Technology Osaka University

MPSoC 2015, Ventura Beach, CA, USA 2015/7/13-17

Graduate School of Information Science and Technology OSAKA UNIVERSITY

Introduction

1

- Requirement for embedded systems
 - Low power
 - High performance
- MPSoC is expected for one of solutions as software defined hardware
 - High-performance and multi-function SoC
 - Multiple Processing Elements (PE)
 - Multicore or many core implementation
 - Strict design constraints
 - Advancement in process technology supports
 - high performance, small area, low power consumption
- Operating supply voltage is shrinking in order to save power consumption

Reliability considering power supply noise

- Reason
 - Low operating voltage by advancement of technology
 - Near or sub-threshold operations on low power operation
- Noise from power supply swing becomes relativelylarge
 - Noise by peak current I_{max}

$$Ev = L\frac{di}{dt}$$

 This effect becomes large when clock frequency becomes higher and peak current becomes larger

Noise by electrical resonance on power line

Graduate School of Information Science and Technology OSAKA UNIVERSITY

Approach to tolerance to power noise at each level

- Architecture level design
 - Topology
- Circuit level design
 - Impedance
- Software level design
 - Task assignment
 - Instruction scheduling

Preliminary study

- Scheduling considering peak current
 - Processor like VLIW issues multiple operations at a time
 - Current largely changes time by time
 - Conservative design tolerant to worst case (the largest) current
- Propose instruction scheduling limiting the peak current

Related work for instruction scheduling

- Xiao [1]
 - Reduce power keeping performance
 - Not appropriate method for limiting peak current
- Toburen [2]
 - Limit peak current accepting performance loss
 - Not model pipeline behavior

[1] S. Xiao and E. M.-K. Lai, "A rough programming approach to power-balanced instruction scheduling for VLIW digital signal processors," IEEE Transactions on Signal Processing, vol. 56, no. 4, pp. 1698–1709, Apr. 2008.

[2] M.Toburen, T. M. Conte, and M. Reilly,

"Instruction scheduling for low power dissipation in high performance microprocessors," in Proceedings of the Power Driven Micro-architecture Workshop in conjunction with the ISCA ' 1998.

9

MPSoC 2015, Ventura Beach, CA, USA 2015/7/13-17

University

Graduate School of Information Science and Technology OSAKA UNIVERSITY

Example of ref [2]

No current constraint

	slot l	slot2	current [mA]
cycle l	LOAD	MUL	45
cycle2	ADD		9
cycle3	ADD		9

Current constraint = 30mA

	slot l	slot2	current [mA]
cycle l	LOAD		27
cycle2	MUL		18
cycle3	ADD	ADD	18

Limitation of ref [2]

- Current is computed by issued instructions
 - In pipeline architecture, current transition of each stage depends on instruction

Graduate School of Information Science and Technology OSAKA UNIVERSITY

Current estimation by proposed method

Current estimation by each stage

Current computation example[mA]

	IF	ID	EX	WB	Sum
Cycle I	MUL: 30				30
Cycle 2	ADD: 30	MUL: 4			34
Cycle 3	LOAD: 30	ADD: 4	MUL: 12		46
Cycle 4	NOP: 30	LOAD: 2	ADD: 3	MUL: 2	37
Cycle 5	NOP: 30	NOP: 0	LOAD: 3	ADD: 2	35
Cycle 6	NOP: 30	NOP:0	NOP: 0	LOAD: 22	52

Graduate School of Information Science and Technology OSAKA UNIVERSITY

Experimental setup

- Benchmark: DSPstone
 - Comparisons with opt.: loop
 - Comparisons with ref [2]: program
- Functional units : Right table
- Max multiple issued instructions : 4
- Current constraint : from 12mA to 20mA

Functional unit

Function	#
ALU	4
Mul	2
Div	
Shifter	2
Load/Store	2

Graduate School of Information Science and Technology OSAKA UNIVERSITY Experimental results

Above: Optimal Ex. Cycles Below: Ex. Cycles by proposed method

	conv.	fir	dot_p.	lms	real_up.	mat.1	mat.2	fft	sum	ratio
12mA	N/A	N/A	N/A	10	10	9	14	N/A	43	1 1 /
	30	30	31	11	11	11	16	90	49	1.14
10.4	20	21	N/A	8	8	7	11	N/A	75	1 1 0
ISMA	21	22	21	10	10	8	13	63	84	1.12
14.000	17	20	18	7	7	6	10	N/A	85	1.07
14mA	20	20	20	7	7	7	10	56	91	1.07
15	17	N/A	N/A	7	7	4	9	N/A	44	1 1 1
TomA	18	22	20	7	7	7	10	51	49	1.11
16	16	N/A	N/A	7	7	4	8	N/A	42	1.07
TOMA	17	18	18	7	7	4	10	52	45	1.07
17	15	N/A	N/A	7	7	4	8	N/A	41	1.07
I/MA	15	18	17	7	7	5	10	45	44	
10	15	N/A	N/A	7	7	3	N/A	N/A	32	1.03
TomA	15	18	16	7	7	4	10	44	33	
10	15	N/A	N/A	7	7	3	N/A	N/A	32	1.03
I9mA	15	18	16	7	7	4	8	44	33	
20 4	N/A	N/A	N/A	7	7	3	N/A	N/A	17	1.06
20mA	15	18	16	7	7	4	8	43	18	
sum									428/394	1.09

Þ

Graduate School of Information Science and Technology OSAKA UNIVERSITY

Experimental result

Constraint	Ex. cy	/cles	Peak/Co	onstraint	Violation count		
	Ref[2]	Proposed	Ref[2]	Proposed	Ref[2]	Proposed	
12mA	N/A	232,104	N/A	0.99	N/A	0	
13mA	187,010	192,846	1.17	0.99	13,632	0	
14mA	186,105	178,655	1.08	0.99	5,607	0	
15mA	175,973	175,207	1.09	1.00	2,351	0	
16mA	172,583	165,566	1.01	0.99	901	0	
17mA	170,008	161,091	1.08	1.00	27	0	
18mA	159,318	158,801	1.07	1.00	68	0	
19mA	159,159	158,298	1.09	1.00	52	0	
20mA	158,882	158,247	1.04	0.99	1	0	

Ref2 violates 8% cycles under 13mA constraint

Conclusion and Future Work

- Conclusion
 - Proposes noise reduction method by limiting peak current using instruction scheduling as a preliminary study
 - Proposes a method considering pipeline architecture behavior
- Future Work
 - Reduce peak current by task assignment for MPSoC
 - Reduce electrical resonance effect by task assignment and instruction scheduling for MPSoC

17

MPSoC 2015, Ventura Beach, CA, USA 2015/7/13-17

Graduate School of Information Science and Technology OSAKA UNIVERSITY

Acknowledgement

This work was supported by JSPS KAKENHI Grant Number 26330064.

Graduate School of Information Science and Technology OSAKA UNIVERSITY

Thank you for your attention!

MPSoC 2015, Ventura Beach, CA, USA 2015/7/13-17

Graduate School of Information Science and Technology OSAKA UNIVERSITY

