Applications Security in IoT

Gabriela Nicolescu Polytechnique Montréal gabriela.nicolescu@polymtl.ca

Internet of Things (IoT) Insecurity

- Sheer Scale of IoT implies a new prime target for hackers
- Security is at a very early stage and its grouth is imperative
 - □ 250 unique security vulenrabilities after testing the 10 most popular IoT products
 - An average of 25 vulnerabilities in each product

(Hewlett-Packard's 2014 IoT Study)

- □ 5,000 new mobile malware strains appear every day
 - A new mobile malware strain for Android is discovered every 18 seconds

(G DATA and its Q1 2015 Mobile Malware Report)

Internet of Things Units Installed Base by Category

2015-07-06

Category	2013	2014	2015	2020
Automotive	96.0	189.6	372.3	3,511.1
Consumer	1,842.1	2,244.5	2.874.9	13,172.5
Generic Business	395.2	479.4	623.9	5,158.6
Vertical Business	698.7	836.5	1,009.4	3,164.4
Grand Total	3,032.0	3,750.0	4,880.6	25,006.6

Hackers vs Security Providers

- Hackers are smart & resourceful
- Hackers are determined and patient
- · Hackers have unlimited time
- Hackers do not respects rules
- Sooner or later, any security solution will be reversed
- · Recovery from hacking is a must
- · Multi-layerd security is required
 - · Applications security
 - Hardware security
 - Network security

2015-07-06

3

Applications Security

Gartner's one of the top ten technology trends for 2015

- Applications are the leading target of attacks by hackers
- Applications represents security breaches that are not visible to traditional network defense methods
 - □ Ex.: problems arise when decrypted data is manipulated by applications
- Applications must take a more active role in security to protect themselves
 - ☐ Security-aware application design
 - □ Dynamic and static application security testing
 - □ Runtime application self-protection, combined with active context-aware and adaptive access controls,
 - □ Building security directly into the application

2015-07-06

4

Hacking Models

- Static Hacking Model
 - □ Without launching the target program
 - Ex. of tools: IDA Pro, StudPE, LordPE, ResHacker, RDG Packer Detector, pied
- Dynamic Hacking Model
 - ☐ Performed while application is running
 - More flexible and powerful than static models
 - Ex. of tools: IDA Pro , OllyDbg, Immunity Debugger, ProcDump32, ImpRec, LordPE, Frida

2015-07-06

5

Debugging

- Hacker's most powerful weapon
 - □ Total control on memory (execution flow and data) examination
- Once debugger is connected to the application, it is a matter of time for hackers to spot out application vulnerabilities
- OS makers indirectly support hacking
 - □ Windbg created by Microsoft
 - ☐ GDB is open source debugger widely used in Linux systems

□ ..

Memory Dump

- Powerful dynamic attack
 - □ copying memory pages (data and code) belonging to the target application
 - Disassembly
 - Memory inspection
- Very easy to implement, using interprocess communication mechanisms
 - □ SuspendProcess
 - □ ReadProcessMemory
- Only few functions are necessary to perform this attack

Code Injection

- Attacker introduce (or "inject") code into an application for many purposes
 - □ Dynamic library exploits
 - □ Modifying control flow
 - ☐ Arbitrarily modify values in a database through a type of code injection called SQL injection.
 - ☐ Install malware or execute malevolent code on a server
 - ☐ Privilege escalation to root permissions by exploiting an OS service
 - □ Attacking web users with HTML/Script Injection
 - □ ...

KyberSecurity Features

Attack Model	Anti-Debug	Integrity Verification	Code Diversity	Cryptography	Obfuscation		
					Resource Concealer	Secure Deployment	Control Flow Concealer
Interactive debugging	****	*	*	**	*	*	*
Code lifting	*		***	****	**	*	***
Run-time memory inspection	****		***	***	***	**	****
Control flow modification		****	**	*		*	***
Instruction replacement	*	****	***	*		*	**
Dynamic library exploits		***	*		****		
Disassembly	***		****	***	*	**	****
Reverse Engineering	****		****	***	***	**	***
Data/resource replacement	****	***	***	***	***	***	
Automatic attacks	****	***	****	**	****	**	***
Differential attacks	*		****	***	*	**	**

Technology Assessment

Application name	Application type	
Space Bubbles	Game – http://www.myrealgames.com/genres/windows-7-games	
Billiard Masters	Game – http://www.myrealgames.com/genres/windows-7-games	
Adobe Reader	PDF file reader	
FoxitReader	PDF file reader	
write	Windows provided text editor	
Notepad++	Advanced text editor	
Winword (2007)	Microsoft Office text editor	
Powerpoint (2007)	Microsoft Office presentation	
Outlook (2007)	Microsoft Office email	
Immunity debugger	Debugger	
OllyDbg	Debugger	
XDbg	Debugger	
ProcessHacker2	Multi-purpose tool to monitor system resources	
Elecard Suite Tools	Multimedia – H264 tools development	
CanyEdgeDetector	Computer Vision Algorithm	
cygwin-ssh 2015-07-06	ssh provided by Cygwin installation	

Security Audit

- Performed by two independent security audit companies
- Security tests performed
 - Automatic test penetration
 - Static and dynamic attacks
 - Reverse engineering
- Attacks duration
 - □ 9 hours No failure
 - □ 8 days Failure only for memory dumping
 - An improvement was performed following the audit

2015-07-06 15

Conclusions

- Information security has never been more challenging
- Application security is one of the areas of concern in cloud computing
 - ☐ Advanced threats to be considered
 - □ Automatic protection
- KyberSecurity platform for software protection
 - □ Automatic security protectors insertion starting from the binary of the original application
 - ☐ High level security
 - □ Performance

Technology protected by patent (#19309180)

Very good

assessment for

secured applications performance

2015-07-06

16