15th International Forum on Embedded MPSoC and Multicore
MPSoC 2015
NanoProcessor Cluster: Naturally Minimizing Active Portion for Dark-Silicon Era
July 13 th 2015
Fumio Arakawa
Nagoya Univ., SH Consulting
0 Graduate School of Information Science, Nagoya Univ. PDSL

Instruction Examples						
Instruction	Operation					
IQM/g0 3/m0,5/e0,7/i0,M00	Load 3/5/7 instructions. from label M00 to multiple IQs of m0-/e0-/i0-nano, respectively					
LP/m0 LC0,M01,M02	Set loop from M01 to M02 of m0-nano					
LLC LC0,r4/K	Load r4 value to loop counter #0 ("/K" indicates keep r4 value.)					
LPH r1/e0,(r1)++	Load half word from memory pointed by r1 to r1 of e0-nano, and increment r1.					
LSH r2/e0,r5/K(r2)	Load half word from memory pointed by r2 to r2 of e0-nano, and add r5 to r2.					
IQ/e0 14,E00	Load 14 instructions. From label E00 to IQ of e0-nano					
MUL r3,r1,r2	Multiply r1 and r2, and write result to r3					
ANDI r4,r3/K,0x3C	Logical AND of r3 and 0x3C, and write result to r4					
MAC r6,r4,r5	Multiply r4 and r5, and accumulate it to r6					
10 Grad	luate School of Information Science, Nagoya Univ. PDSL Parallel & Distributed Systems Lab.					

Summary					
• NanoProcessor + ove – (small, fast, active) +	errun buffe (large, dense	r = fit to da e, slow, inactiv	rk silicon e)	Era	
Evaluation: matrix_m	ul_matrix_k	oitextract (C	Coremark	1.0)	
0	Out-of-Order NanoProcessor Cluster				
memory latency	2	2	10		
execution cycles	17,393	13,736	13,744		
ratio to Out-of-Order		78.97%	79.02%		
Future Work					
 Search for suitable a Embedded, Networki 	application ng, HPC,	S			
More Tools, Evaluations, and Collaborations					
– Compiler, Benchmark	k, New types	of NanoProce	essors,		
11 Graduate School of Information Science, Nagoya Univ. PDSL Parallel & Distributed Systems Lab.					