
1	

0	

NanoProcessor Cluster:
Naturally Minimizing Active
Portion for Dark-Silicon Era

July 13th, 2015

Fumio Arakawa
Nagoya Univ., SH Consulting

15th International Forum on Embedded MPSoC and Multicore
MPSoC 2015

1	

Motivation: Total Efficiency
• Multi-Many Cores : excellent for High-TLP portions
• Amdahl's Law : High-speed core for Low-TLP portions.
• Pollack’s Law : High-speed core is inefficient.
–  Conventional High speed core
=> (large, complicated, fast) => inefficient
–  High ILP => large scope => large fast buffers
–  Large but high frequency => many pipeline latches

• Nanoprocessor + overrun buffer
=> (small, fast, active) + (large, dense & slow, inactive)
=> Efficient => good for embedded systems

2	

2	

Inefficient

Granularity of Parallelism
•  Fine/Coarse Grain: fit to ILP/TLP *), respectively
•  Middle Grain: Bad for conventional Arch.
•  µTLP of NanoProcessor Cluster fits to Middle Grain

ILP

µTLP

TLP

Fine
(<10)

Middle
(10 - 100)

Coarse
(100<)

Efficient

Efficient

Inefficient Efficient Out-of-Order, etc.

NanoProcessor Cluster

Multi/Many Core

Granularity
(insts.)	

*) ILP / TLP : instruction/thread level parallelism

3	

Conversion from ILP to µTLP
•  High speed microprocessor core utilizes ILP.
–  Pipelined Architecture: Parallelism = # of the pipeline stages
–  Superscalar Architecture: Parallelism = # of issue slots
–  Good for Fine Grain parallelism
•  Conversion from ILP to µTLP
–  µ-Thread : a functionally divided flow of original single thread

 Flows are tightly coupled.
•  from High speed core to “NanoProcessor Cluster ”
–  NanoProcessor : Subset of Conventional CPU

 Execute a µ-Thread
 Scalar short-pipeline processor: for limited ILP of µ-Thread

–  Its Cluster : equivalent to microprocessor
 Good for both Fine and Middle Grain parallelism
 highly efficient and high performance

3	

4	

D$
 o
r R
AM

I$, RAM
 or RO

M

Bus interface unit

Internal Bus

Block Diagram

e0-nano

ALU

Register
 file

Multiplier
Divider
SIMD
(Option)

IQ m0-nano

Adder

Register
 file

Data
Load/
Store

controller

IQ

e1-nano
(option)

ALU

Register
 file

Multiplier
Divider
SIMD
(Option)

IQ m1-nano
(option)

Adder

Register
 file

Data
Load/
Store

controller

IQ

Ba
nk

#0

Ba
nk

#1

Ba
nk

#2

Ba
nk

#3

i0-nano　
　

Instruction
fetch

controller
Branch
controller

IQ

Adder

5	

Overrun buffer
•  Toward small register file
–  register: most expensive storage, top of memory hierarchy
–  long life for long pipeline => must be large
–  allocate => idle => write => n-time (n≧0) read => idle => retire
•  with “Overrun buffer” & “Keep” flag
–  allocate register at write back stage

•  fail to allocate for write after read => write to overrun buffer
–  retire just after the last read (check “Keep” flag)

•  not to wait overwrite (conventional retire sign)
–  allocate & write => n-time (read & keep) => read & retire
–  Small register file is enough.
• Small core + Overrun buffer

4	

6	

Overrun	 buffer	

Overrun buffer (continued)
•  To absorbs write/read timing gap of NanoProcessors

...	
RAM	

Sender	
Nano-‐Processor	

Receiver	
Nano-‐Processor	

– While sender and receiver
paces are well synchronized,
overrun buffer is idle.

– Once receiver stalls,
it requests to stop data sending
and keeps all the on-the-fly data
in overrun buffer.

– On-the-fly data can be huge in a
high-throughput long-latency case,
and a RAM is useful.

–  Either the sender/receiver or
overrun buffer is active.
 => fit to Dark silicon era

7	

Instruction fetch & branch set up
•  i0-nano Processor explicitly fetches instructions,
and sets up branch & loop structure.

time

code order

i0.m0.e0 Cluster case, extracted from matrix_mul_matrix_bitextract of Coremark 1.0

5	

8	

Minimize life time of register values

time

code order

• Overrun buffers & keep flag => register life: write to last read

9	

Long life time of register values

time

code order

• Out-of-Order processor => rename to retire
• Many-port fast large physical register file is required.

6	

10	

Instruction Examples
Instruction Operation

IQM/g0	 3/m0,5/e0,7/i0,M00	 Load 3/5/7 instructions. from label M00 to
multiple IQs of m0-/e0-/i0-nano, respectively

LP/m0	 LC0,M01,M02	 Set loop from M01 to M02 of m0-nano
LLC	 LC0,r4/K	 Load r4 value to loop counter #0 (“/K”

indicates keep r4 value.)
LPH	 r1/e0,(r1)++	 Load half word from memory pointed by r1

to r1 of e0-nano, and increment r1.
LSH	 r2/e0,r5/K(r2)	 Load half word from memory pointed by r2

to r2 of e0-nano, and add r5 to r2.
IQ/e0	 14,E00	 Load 14 instructions. From label E00 to IQ of

e0-nano
MUL	 r3,r1,r2	 Multiply r1 and r2, and write result to r3
ANDI	 r4,r3/K,0x3C	 Logical AND of r3 and 0x3C, and write result

to r4
MAC	 	 r6,r4,r5	 Multiply r4 and r5, and accumulate it to r6

11	

Summary
• NanoProcessor + overrun buffer = fit to dark silicon Era

–  (small, fast, active) + (large, dense, slow, inactive)
•  Evaluation: matrix_mul_matrix_bitextract (Coremark 1.0)

Future Work
•  Search for suitable applications

–  Embedded, Networking, HPC, ...
•  More Tools, Evaluations, and Collaborations

–  Compiler, Benchmark, New types of NanoProcessors, ...

