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@Zzld=lalpal OVERVIEW

State-of-the-art and challenges
Reinforcement learning formulation of the energy minimisation problem
Some experimental results

Conclusions and perspectives
* FDSOI: DFVS vs DBB

>N
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Source:
Urban Farming
News

Source:
Fairphone

Source: NXP Source: HPE

° Problem: design a manager (power governor, run-time,...) that:

Minimise energy under performance constraints

Optimize energy efficiency under power and performance constraints
Mitigate heating

Maximise performance under power capping

* Actuators

Hardware units operating point (mode idle, mode sleep, DVFS, ...)

Load balancing of the application software on the hardware units
16th MPSoC forum | Anca Molnos | July 11-15, 2016 |3



STATE-OF-THE-ART: 2 MAIN VIEWS

Many-core/dark silicon Heterogeneous processors (CPU/GPU)

Assumptions

* One can compute the power * One can measure the power
* The exactly execution profile is known * Only the values of performance counters
(start/end/execution/idle times, ...) are known
CSBusy HSTexBusy
v CSTime HSTexInstCount
— -t DepthStencilTestB HSPatches
Ei(Vi, Vi) = RiCiVE + Tik; Ve~ s et SencTestBusy e oy
DSTime HSSALUInstCount
GPUTime HSVALUBusy
GPUBusy HSVALUInstCount
- T (I _ ] gg_l?usv GSALUBuUSsy
=g, +— - U Oriainal ime GSALUEfficiency
L A s o HSBusy GSALUInstCount

o T = HSTime GSALUTexRatio
P iy ("lx--] —H,, ) r S InterpBusy GSExportPct

- S il PrimitiveAssemblyBusy ~oprimsin
€ = 4 ~ Gos ] i PSBusy GSSALUBuUsy

PSTime
— — GSSALUInstCount
Hy =l + K+ K, (ﬂ- ! gn:gz:gﬂzzcs GSTexBusy

— . GSTexInstCount
C Nonlinear ShaderBusyDS
= ol controller ShaderBusyGS GSVALUBuUsy
k —
1-ru, ShaderBusyHS GSVALUInstCount
ShaderBusyPS GSVerticesOut
ShaderBusyVS ClippedPrims
TessellatorBusy CulledPrims
TexUnitBusy PAPixelsPerTriangle
VSBusy PAStalledOnRasterizer
VSTime PrimitivesIn
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STATE-OF-THE-ART: 2 MAIN VIEWS

Many-core/dark silicon Heterogeneous processors (CPU/GPU)

Assumptions

* One can compute the power « One can measure the power
* The exactly execution profile is known * Only the values of performance counters
(start/end/frame times, ...) are known

Main challenges addressed

* Models to fit application dynamics and « Load balancing and metrics for application

methods to solve for, e.g., frequency performance power < consumption
Approaches

« Control theory: simple/complex controllers +« Power-performance prediction models
[Wu04,Garg10,David12,Bartolinil2, Bogdan13, Rahmanil5 ..] [Dhiman09,Paull13,VRodriguez13,Pathanial5]

* Learning ranosLiu10,Jung10,Dhiman11,wang11,Ye14, « Control theory
PRSI NI S ) «  Simple controllers (wang14,Dietrich14, Pathania14]

* Theoretical proofs - Experimental validation (large traces)

Evaluation

« Simulation (no thorough cost investigation) + Execution and measurements

« OQver-simplified view on software « Too low observability of application in
« Assume atoo high observability of relation to the hardware and power
application and hardware consumption



@2sjd<{epl CHALLENGES

* Deal with “non-ideal’” cases

* Application are too dynamic, exact models are hard to obtain
* Dependent on the content of the input data
* Application performance is not proportional to the operating point (e.g.,
core clock frequency)
* Contention at shared resources, memory accesses

* System software
* Task scheduling, timers, interrupts

* (Relatively) low computation cost of energy optimization

* No large matrix inversion

Small state space

No/limited costly functions (exponential, trigonometric)
No/limited least mean squares

° Define hardware — manager < application interfaces for good
application and power consumption visibility

* Power consumption should probably be the concern of the application and
the operating system
* In which parts of the application is the power consumed

16th MPSoC forum | Anca Molnos | July 11-15, 2016 |7
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@2sjd<{epl CHALLENGES

* Deal with “non-ideal’” cases

* Application are too dynamic, exact models are hard to obtain
* Dependent on the content of the input data

* Application performance is not proportional to the operating point (e.g.,

core clock frequency)
* Contention at shared resources, memory accesses
° System software
* Task scheduling, timers, interrupts

* (Relatively) low computation cost of energy optimization

* No large matrix inversion

Small state space

No/limited costly functions (exponential, trigonometric)
No/limited least mean squares

° Define hardware — manager < application interfaces for good
application and power consumption visibility

* Power consumption should probably be the concern of the application and
the operating system
* In which parts of the application is the power consumed
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REINFORCEMENT LEARNING (RL) APPROACH

°* RL algorithm

* an agent, which aims to learn from the interaction with an environment
(trial and error) to achieve a goal (maximize reward) [Sutton1998]

* Adaptive (indirect) controller

Environment
states: {S;}izon

°* Advantages
* no model of the dynamics of the system

* the learning is not (really) supervised state, s, action
° training happens in the same time with Agent
S reward, r,
the optimization process Agyq

(exploration/exploitation)
°* no need to know relevant use-cases

°* Disadvantages

°* may take poor decisions during exploration

* fully-fledged versions may have a large overhead

* theoretical proofs (convergence speed, optimality) are valid only for discrete&finite
state space, stationary, markovian systems (with some extension to semi-markovian

cases)
* however known to work ok in non-stationary, non-markovian, systems.

16th MPSoC forum | Anca Molnos | July 11-15, 2016 |9



LOW COST Q-LEARNING

* Q-learning: the learned knowledge of the agent - a value table
Q(states,actions)

* Decided action, given s, Q - E€-greedy
* Exploitation: argmax(Q(s))

* Exploration: some random value

* Construct the Q table Environment
* |Initial value of the Q table states: {S}izon

* Update formula:

;o state, s,
Qet1(s,a) = Qu(s,a)+a [?“t+1 +ymaxQi(s’, a’) - Qt(S,a)} reward, r, Agent
* Potential to learn complex behavior Decide action a;,,
* No free lunch: Update Q
* define the states ap 4, ...4a,
* gueues filling indicates application progress S, ]
° set its parameters S
* experimental investigation 1
* define a reward function S
@ - k

action
Ars1

A.Molnos, S.Lesecq, J.Mottin, D.Puschini, “Investigation of Q-learning applied to DVFS management of a System-on-Chip”. In 4th IFAC International Conference on

Intelligent Control and Automation Sciences, ICONS (2016).

16th MPSoC forum | Anca Molnos | July 11-15, 2016 | 10
B



* ARM host processor and an SoC with 16 L/
processors elements. rA

* Android OS + in-house run-time

* Application: a part of a HMAX object ‘#;?ﬁ
recognition o

* 15%-44% energy reduction wrt. state-of-the-art

* similar number of throughput violations

* lightweight manager: 0.7% of application time,
1KB footprint

: i
|
- - ‘
BE X
1 ® T
l'l Vs -
.

android

* Commercial board (on going work)

* [IMX6: dual-core ARM + GPU
* Ubuntu OS, OpenCL
* Application: obstacle detection

16th MPSoC forum | Anca Molnos | July 11-15, 2016 | 11




@2sjd={a gl CONCLUSIONS

°* Challenges in managing energy consumption in SoCs

* Deal with “non-ideal” cases
* (Relatively) low computation cost of energy optimization
* Define hardware «— manager < application interfaces

°* An adaptive Q-learning-based approach
* Model-free, potential to learn complex behaviour

°* Experiments with promising results

* Higher energy reductions than state-of-the-art methods addressing the same
application domain.

16th MPSoC forum | Anca Molnos | July 11-15, 2016 | 12
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PERSPECTIVES

°* More advanced RL methods that lead to quicker convergence and
higher adaptability
°* e.g., actor-critic, hierarchical, TD(A), best-match - their applicability and

costs should be evaluated.
* multi-criteria optimization: temperature, aging

° Better methods to deal with non-Markovian, non-stationary systems

* Deal with complex energy consumption models in future
technologies

16th MPSoC forum | Anca Molnos | July 11-15, 2016 | 13
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FDSOI28 PARAMETRIC EXPLORATION

°* How to choose the best power/energy optimization strategy (DBB

vs DVFS) to implement?
°* Do we really need Dynamic Body Bias (DBB) mechanism in our

future design?

Substrate RVT, LVT
. Poly Bias i, A
Static Parameters 10nm, 16nm
Process SS. TT FF
Corner
Inputs User vdd [0.6V, 1.4V]
ST T VbbinLVT | [0V, 1.5V]

Dynamic | controlled Vbb in RVT |_[-1.5V, OV
Parameters Operating Temp  [-40°C, 125oC]|

Conditions| Toggle Rate = [0.1%, 50%]
Fmax

Measurements Iswitch
lleak

Electrical simulation of aring oscillator

“Body Bias usage in UTBB FDSOI designs: A parametric exploration approach”, D. Puschini, J. Rodas, E. Beigne, M. Altieri, S. Lesecq. Special Issue:
Planar Fully-Depleted SOI technology, Solid-State Electronics Elsevier Journal, Volume 117, March 2016, Pages 138-145
16th MPSoC forum | Anca Molnos | July 11-15, 2016 | 14




Ptot

VDD,vBB
o -
o

Dynamic Power Dominates
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STATIC AND DYNAMIC POWER CONSUMPTION

Static Power Dominates
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50%

20%

Dynamic Pwr

1% |

0.1%

DBB for low speed

DVFS for high speed

DBB+DVFS

.............................................................................................. DVFS _

: ; DBB for extreme speed-up
Lo . ................ [ . ..................... L EE— . ........................ . ................. .._ Process TT

j g : : - | Vbb=-1.5Vto0OV

: : vdd = 0.6V to 1.4V
I | | v | | | I
40 -20 0 25 50 75 105 125
Temperature
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