

### ENERGY EFFICIENT SOCS A REINFORCEMENT LEARNING APPROACH

Anca Molnos, CEA LETI, Grenoble, France

16<sup>th</sup> MPSoC forum - Nara, Japan, July 11-15, 2016



- 1. State-of-the-art and challenges
- 2. Reinforcement learning formulation of the energy minimisation problem
- 3. Some experimental results
- 4. Conclusions and perspectives
  - FDSOI: DFVS vs DBB

## SOC ENERGY MANAGEMENT CONTEXT



<u>Ceatech</u>







**Urban Farming** News



Source: HPE

## Problem: design a *manager* (power governor, run-time,...) that:

- Minimise energy under performance constraints
- Optimize energy efficiency under power and performance constraints
- Mitigate heating

Source: NXP

- Maximise performance under power capping

## **Actuators**

- Hardware units operating point (mode idle, mode sleep, DVFS, ...)
- Load balancing of the application software on the hardware units

## <u>Ceatech</u>

#### **STATE-OF-THE-ART: 2 MAIN VIEWS**

| Many-core/dark silicon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Heterogeneous processors (CPU/GPU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Assumptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| <ul> <li>One can compute the power</li> <li>The exactly execution profile is known (start/end/execution/idle times,)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>One can measure the power</li> <li>Only the values of performance counters are known</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| $E_{i}(V_{i}, V_{ti}) = R_{i}C_{i}V_{i}^{2} + T_{i}k_{i}V_{i}e^{\left(-\frac{V_{t}}{S_{t}}\right)}$ $\overline{q}_{i}' = \overline{q}_{k-1} + \frac{T}{2}\left(\overline{\lambda}_{k-1} - \overline{\mu}_{k-1}\right)$ $\overline{q}_{k} = \overline{q}_{k-1} + \left(\overline{\lambda}_{k-1} - \overline{\mu}_{k-1}\right)T$ $e_{k} = \overline{q}_{i}' - q_{ref}$ $\overline{\mu}_{k} = \overline{\mu}_{k-1} + K_{I}e_{k} + K_{P}\left(e_{k} - e_{k-1}\right)$ $f_{k} = \frac{\overline{C}_{2}\overline{\mu}_{k}}{1 - \overline{t}_{1}\overline{\mu}_{k}}$ Original system Demand, $\lambda$ Domain $q$ $f_{k} = \frac{\overline{C}_{2}\overline{\mu}_{k}}{1 - \overline{t}_{1}\overline{\mu}_{k}}$ | CountersHSALUTexRatioCSBusyHSTexBusyCSTimeHSTexInstCountDepthStencilTestBusyHSPatchesDSBusyHSSALUBusyDSTimeHSSALUInstCountGPUTimeHSVALUBusyGPUBusyHSVALUBusyGSTimeGSALUEfficiencyHSBusyGSALUEfficiencyHSBusyGSALUInstCountHSTimeGSALUInstCountHSTimeGSALUInstCountHSTimeGSALUInstCountHSTimeGSALUInstCountHSTimeGSALUInstCountHSTimeGSALUInstCountShaderBusyGSSALUBusyShaderBusyGSTexBusyShaderBusyCSGSTexBusyShaderBusyGSGSVALUBusyShaderBusyGSGSVALUBusyShaderBusyHSGSVerticesOutShaderBusyPSClippedPrimsTessellatorBusyCulledPrimsTessellatorBusyCulledPrimsTessellatorBusyCulledPrims |  |  |  |  |  |

VSBusy

VSTime

PAStalledOnRasterizer

PrimitivesIn

## <u>Ceatech</u>

#### **STATE-OF-THE-ART: 2 MAIN VIEWS**

| Many-core/dark silicon |                                                                                                                                                                                                                  | Heterogeneous processors (CPU/GPU) |                                                                                                                                                                                                      |  |  |  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                        | Assumptions                                                                                                                                                                                                      |                                    |                                                                                                                                                                                                      |  |  |  |
| •                      | One can compute the power<br>The exactly execution profile is known<br>(start/end/frame times,)                                                                                                                  | •                                  | One can measure the power<br>Only the values of performance counters<br>are known                                                                                                                    |  |  |  |
|                        | Main challenges addressed                                                                                                                                                                                        |                                    |                                                                                                                                                                                                      |  |  |  |
| •                      | Models to fit application dynamics and methods to solve for, e.g., frequency                                                                                                                                     | •                                  | Load balancing and metrics for application performance power ↔ consumption                                                                                                                           |  |  |  |
|                        | Approaches                                                                                                                                                                                                       |                                    |                                                                                                                                                                                                      |  |  |  |
| •                      | Control theory: simple/complex controllers<br>[Wu04,Garg10,David12,Bartolini12, Bogdan13, Rahmani15]<br>Learning [Tan09,Liu10,Jung10,Dhiman11,Wang11,Ye14,<br>Das14,Triki14,Khan14,Chen15]<br>Theoretical proofs | •                                  | Power-performance prediction models<br>[Dhiman09,Paul13,VRodriguez13,Pathania15]<br>Control theory<br>• Simple controllers [Wang14,Dietrich14, Pathania14]<br>Experimental validation (large traces) |  |  |  |
|                        | Evaluation                                                                                                                                                                                                       |                                    |                                                                                                                                                                                                      |  |  |  |
| •                      | Simulation (no thorough cost investigation)                                                                                                                                                                      | •                                  | Execution and measurements                                                                                                                                                                           |  |  |  |
| •                      | Over-simplified view on software<br>Assume a too high observability of<br>application and hardware                                                                                                               | •                                  | Too low observability of application in relation to the hardware and power consumption                                                                                                               |  |  |  |



#### **CHALLENGES**

- Deal with "non-ideal" cases
  - Application are too dynamic, exact models are hard to obtain
    - Dependent on the content of the input data
  - Application performance is not proportional to the operating point (e.g., core clock frequency)
    - Contention at shared resources, memory accesses
    - System software
      - Task scheduling, timers, interrupts

## • (Relatively) low computation cost of energy optimization

- No large matrix inversion
- Small state space
- No/limited costly functions (exponential, trigonometric)
- No/limited least mean squares
- ...
- Define hardware ↔ manager ↔ application interfaces for good application and power consumption visibility
  - Power consumption should probably be the concern of the application and the operating system
  - In which parts of the application is the power consumed



#### **CHALLENGES**

- Deal with "non-ideal" cases
  - Application are too dynamic, exact models are hard to obtain
    - Dependent on the content of the input data
  - Application performance is not proportional to the operating point (e.g., core clock frequency)
    - Contention at shared resources, memory accesses
    - System software
      - Task scheduling, timers, interrupts

## • (Relatively) low computation cost of energy optimization

- No large matrix inversion
- Small state space
- No/limited costly functions (exponential, trigonometric)
- No/limited least mean squares
- ...
- Define hardware ↔ manager ↔ application interfaces for good application and power consumption visibility
  - Power consumption should probably be the concern of the application and the operating system
  - In which parts of the application is the power consumed

• RL algorithm

<u>Ceatech</u>

- an *agent*, which aims to learn from the interaction with an *environment* (trial and error) to achieve a *goal (maximize reward)* [Sutton1998]
- Adaptive (indirect) controller
- Advantages
  - no model of the dynamics of the system
  - the learning is not (really) supervised
    - training happens in the same time with the optimization process (exploration/exploitation)
    - no need to know relevant use-cases

### Disadvantages

- may take poor decisions during exploration
- fully-fledged versions may have a large overhead
- theoretical proofs (convergence speed, optimality) are valid only for discrete&finite state space, stationary, markovian systems (with some extension to semi-markovian cases)
  - however known to work ok in non-stationary, non-markovian, systems.





## LOW COST Q-LEARNING

- Q-learning: the learned knowledge of the agent  $\rightarrow$  a value table Q(states, actions)
  - Decided action, given s,  $Q \rightarrow \mathcal{E}$ -greedy
    - Exploitation: argmax(Q(s))
    - Exploration: some random value
  - Construct the Q table
    - Initial value of the Q table
    - Update formula:

$$Q_{t+1}(s,a) = Q_t(s,a) + \alpha \left[ r_{t+1} + \gamma \max_{a'} Q_t(s',a') - Q_t(s,a) \right]$$
 state reward

- Potential to learn complex behavior
  - No free lunch:

. . .

- define the states
  - queues filling indicates application progress
- set its parameters ۲
  - experimental investigation
- define a reward function

, S<sub>t</sub> action Agent  $\mathbf{J}, \mathbf{r}_{t}$ Decide action  $a_{t+1}$ Update Q  $a_0 a_1 \dots a_n$  $S_0$ S₁ Sk

 $a_{t+1}$ 

**Environment** 

states: {s<sub>i</sub>}<sub>i=0,N</sub>

A.Molnos, S.Lesecq, J.Mottin, D.Puschini, "Investigation of Q-learning applied to DVFS management of a System-on-Chip". In 4th IFAC International Conference on Intelligent Control and Automation Sciences, ICONS (2016). 16th MPSoC forum | Anca Molnos | July 11-15, 2016 | 10



## RESULTS

- Test board
  - ARM host processor and an SoC with 16 processors elements.
  - Android OS + in-house run-time
  - Application: a part of a HMAX object recognition
  - 15%-44% energy reduction wrt. state-of-the-art
  - similar number of throughput violations
  - lightweight manager: 0.7% of application time, 1KB footprint
- Commercial board (on going work)
  - IMX6: dual-core ARM + GPU
  - Ubuntu OS, OpenCL
  - Application: obstacle detection







#### **CONCLUSIONS**

#### • Challenges in managing energy consumption in SoCs

- Deal with "non-ideal" cases
- (Relatively) low computation cost of energy optimization
- Define hardware ↔ manager ↔ application interfaces
- An adaptive Q-learning-based approach
  - Model-free, potential to learn complex behaviour
- Experiments with promising results
  - Higher energy reductions than state-of-the-art methods addressing the same application domain.



- More advanced RL methods that lead to quicker convergence and higher adaptability
  - e.g., actor-critic, hierarchical, TD(λ), best-match → their applicability and costs should be evaluated.
  - multi-criteria optimization: temperature, aging
- Better methods to deal with non-Markovian, non-stationary systems
- Deal with complex energy consumption models in future technologies



- How to choose the best power/energy optimization strategy (DBB vs DVFS) to implement?
- Do we really need Dynamic Body Bias (DBB) mechanism in our future design?

|              | Static Parameters     |                    | Substrate         | RVT, LVT                |
|--------------|-----------------------|--------------------|-------------------|-------------------------|
|              |                       |                    | Poly Bias         | 0nm, 4nm,<br>10nm, 16nm |
|              |                       |                    | Process<br>Corner | SS, TT, FF              |
| Inputs       | Dynamic<br>Parameters | User<br>controlled | Vdd               | [0.6V, 1.4V]            |
|              |                       |                    | Vbb in LVT        | [0V, 1.5V]              |
|              |                       |                    | Vbb in RVT        | [-1.5V, 0V]             |
|              |                       | Operating          | Temp              | [−40°C, 125°C]          |
|              |                       | Conditions         | Toggle Rate       | [0.1%, 50%]             |
|              |                       |                    | Fmax              |                         |
| Measurements |                       |                    | Iswitch           |                         |
|              |                       |                    | lleak             |                         |

#### Electrical simulation of a ring oscillator

"Body Bias usage in UTBB FDSOI designs: A parametric exploration approach", D. Puschini, J. Rodas, E. Beigne, M. Altieri, S. Lesecq. Special Issue: Planar Fully-Depleted SOI technology, Solid-State Electronics Elsevier Journal, Volume 117, March 2016, Pages 138-145

#### **STATIC AND DYNAMIC POWER CONSUMPTION**

Ceatech



| 15





# THANK YOU!



[Sutton98]. Sutton, R.S. and Barto, A.G. Reinforcement learning: An introduction, volume 1. MIT press Cambridge.

[Chen15] Chen, Z. and Marculescu, D. Distributed Reinforcement Learning for Power Limited Many-core System Performance Optimization. DATE 1521-1526.

[Das14] Das, A. et al. Reinforcement Learning-Based Inter and Intra-Application Thermal Optimization for Lifetime Improvement of Multicore Systems. In Proceedings of the The 51st Annual Design Automation Conference on Design Automation Conference, 2014

[Khan14] Khan, U. and Rinner, B.. Online learning of timeout policies for dynamic power management. ACM TECS, 13(4).

[Tan09] Tan, Y.T.Y., Liu, W.L.W., and Qiu, Q.Q.Q. (2009). Adaptive power management using reinforcement learning. IEEE/ACM ICCAD.

[Triki15] Triki, M., Wang, Y., Ammari, A.C., and Pedram, M. . Hierarchical power management of a system with autonomously power-managed components using reinforcement learning. Integration, 48, 10-20.

[Alimonda09] Alimonda, A., Carta, S., Acquaviva, A., Pisano, A., and Benini, L. "A feedback-based approach to DVFS in data-flow applications". IEEE Trans. Comput. Aided Des. Integr. Circuits Sys. 28, 11, 1691–1704.

[Ogras09] U.Y. Ogras, Umit Y. Ogras, R. Marculescu, D. Marculescu, and E. Gu Jung, "Design and Management of Voltage-Frequency Island Partitioned Networkson-Chip," IEEE Trans. on Very Large Scale Integration Systems, vol. 17, no. 3, pp. 330-341, 2009.

[Garg10] Garg, S., Marculescu, D., and Marculescu, R. "Custom feedback control: Enabling truly scalable on-chip power management for MPSoCs". In Proceedings of the 16th ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED'10). IEEE, 425–430.

[David12] R. David, P. Bogdan, R.Marculescu, "Dynamic power management for multicores: Case study using the lintel SCC". VLSI-SoC 2012: 147-152

[Wu04] Q. Wu, P. Juang, M. Martonosi, M., and Clark, D. W. "Formal online methods for voltage/frequency control in multiple clock domain microprocessors". In Proceedings of the 11th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS'04). ACM, 248–259,2004

[Carta07] Salvatore Carta, Andrea Alimonda, Alessandro Pisano, Andrea Acquaviva, and Luca Benini. "A control theoretic approach to energy-efficient pipelined computation in MPSoCs". ACM Trans. Embed. Comput. Syst. 6, 4, Article 27, September 2007.

[Bogdan13] Paul Bogdan, Radu Marculescu, and Siddharth Jain. "Dynamic power management for multi-domain system-on-chip platforms: An optimal control approach". ACM Trans. Des. Autom. Electron. Syst. 18, 4, Article 46, October 2013.

[Zanini12] F. Zanini, D. Atienza, C. N. Jones, "Online Thermal Control Methods for Multiprocessor Systems, ACM Transactions on Design Automation of Electronic Systems", Vol. 18, No. 1, Article 6, December 2012.

[Bartolini12] A. Bartolini, M. Cacciari, A. Tilli, and L. Benini, "Thermal and energy management of high-performance multicores: Distributed and self-calibrating modelpredictive controller," IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 1, pp. 170–183, 2012

[Almeida11] G. Almeida, R. Busseuil, L. Ost, F. Bruguier, G. Sassatelli, P. Benoit, L. Torres, and M. Robert, "PI and PID regulation approaches for performanceconstrained adaptive multiprocessor system-on-chip," Embedded Systems Letters, IEEE, vol. 3, no. 3, pp. 77–80, Sept 2011.

[Paul13] I. Paul, V. Ravi, S. Manne, M. Arora, and S. Yalamanchili, "Coordinated energy management in heterogeneous processors," in Proceedings

of SC13: International Conference for High Performance Computing, Networking, Storage and Analysis, ser. SC '13. ACM, 2013.

[Pathania15] Anuj Pathania, Alexandru Eugen Irimiea, Alok Prakash, and Tulika Mitra. 2015. Power-Performance Modelling of Mobile Gaming Workloads on Heterogeneous MPSoCs. In Proceedings DAC 2015.

[Rahmani15] A.-M. Rahmani et al. Dynamic Power Management for Many-Core Platforms in the Dark Silicon Era: A Multi-Objective Control Approach. In Proc. Int. Symp. on Low Power Electronics and Design, ISLPED, 2015

[Dhiman09] Gaurav Dhiman, Giacomo Marchetti, and Tajana Rosing. 2009. vGreen: a system for energy efficient computing in virtualized environments. In Proceedings ISLPED 2009

[VRodriguez13] N. Vallina-Rodriguez and J. Crowcroft, "Energy management techniques in modern mobile handsets," IEEE Commun. Surveys Tuts., vol. 15, no. 1, pp. 179–198, 2013.

[Wang14] Yue Wang and Nagarajan Ranganathan. 2014. A Feedback, Runtime Technique for Scaling the Frequency in GPU Architectures. In Proceedings ISVLSI 2014

[Dietrich14] B. Dietrich and S. Chakraborty, "Forget the battery, let's play games!" in ESTIMedia, 2014.

[Pathania14] A. Pathania, Q. Jiao, A. Prakash, and T. Mitra, "Integrated CPU-GPU power management for 3D mobile games," in DAC, 2014.

16th MPSoC forum | Anca Molnos | July 11-15, 2016 | 18