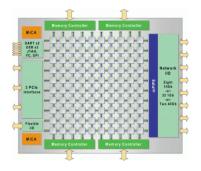
On the analysis of virtual platform generated traces

Frédéric Pétrot and Marcos Cunha

Laboratoire TIMA / System Level Synthesis Group Université Grenoble Alpes

Context	Traces	Analysis	Experimentations	Conclusion
000	0000	oo		o
Outline				

Context	Traces	Analysis	Experimentations	Conclusion
●○○		oo	00000	o
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			


New architectures, new challenges

- "The processor is the NAND gate of the future", dixit Chris Rowen
- Not quite there yet, but getting close, ...

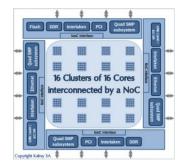
Context ●○○	Traces	Analysis 00	Experimentations	Conclusion o

New architectures, new challenges

- "The processor is the NAND gate of the future", dixit Chris Rowen
- Not quite there yet, but getting close, ...

Tilera (Tile-Mx)

- 100 processors on a chip
- 64-bit ARM
- Chipwide hardware cache coherency
- Power Consumption $\approx 100 \text{ W}$


Context	Traces	Analysis	Experimentations	Conclusion
●○○	0000	00		o

New architectures, new challenges

- "The processor is the NAND gate of the future", dixit Chris Rowen
- Not quite there yet, but getting close, ...

Kalray (MPPA - Bostan)

- 256 processors on chip (16 clusters of 16 PE)
- 64-bit 3-issue VLIW
- Caches but no hardware cache coherency at all
- Power Consumption \approx 25 W

Context	Traces	Analysis	Experimentations	Conclusion
000				

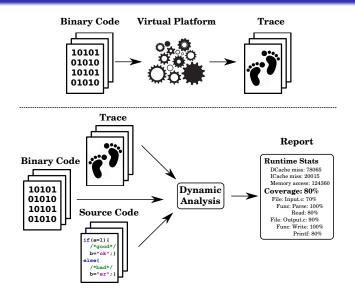
Some SW bugs in *Multi/Many core* architectures

Architecture specific bugs

- Hardware Software integration mismatches
- Bad understanding or wrong usage of specific mechanisms by the application/os developper
- Typical example: access to cached variable that may have been modified

Functional bugs

- Due (mainly) to parallel execution
- Potentially sporadic since depending on the execution order (non determinism)

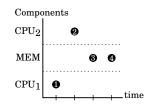

 Context
 Traces
 Analysis
 Experimentations
 Conclusion

 oo
 0000
 00
 00000
 0
 0

Trace based debug and analysis

Context
ocoTraces
ocoAnalysis
ocoExperimentations
ococoConclusion
oTrace based debug and analysis

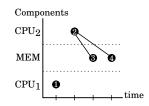
Context	Traces	Analysis	Experimentations	Conclusion
000	●○○○	oo		O
Traces				


- Set of events giving a view of the system behavior
- Usually generated per component
- Additional relations necessary

Event ID	Component ID	Type of Event	Cycle Number	Data
1	CPU_1	INSTRUCTION	1235678	PC=0x000000A0
2	CPU_2	INSTRUCTION	1235679	PC=0x000000B0
3	MEMORY_1	READ	1235680	ADDR=0xDEADBEEF
4	MEMORY_1	READ	1235781	ADDR=0xDEADBEEF

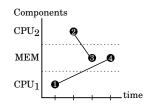
Context	Traces	Analysis	Experimentations	Conclusion
000	●○○○	oo		O
Traces				

- Set of events giving a view of the system behavior
- Usually generated per component
- Additional relations necessary


Event ID	Component ID	Type of Event	Cycle Number	Data
1	CPU_1	INSTRUCTION	1235678	PC=0x000000A0
2	CPU_2	INSTRUCTION	1235679	PC=0x000000B0
3	MEMORY_1	READ	1235680	ADDR=0xDEADBEEF
4	MEMORY_1	READ	1235781	ADDR=0xDEADBEEF

Context	Traces	Analysis	Experimentations	Conclusion
000	●○○○	oo		O
Traces				

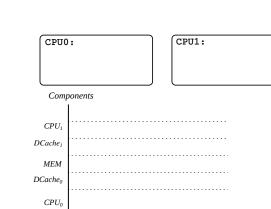
- Set of events giving a view of the system behavior
- Usually generated per component
- Additional relations necessary


Event ID	Component ID	Type of Event	Cycle Number	Data
1	CPU_1	INSTRUCTION	1235678	PC=0x000000A0
2	CPU_2	INSTRUCTION	1235679	PC=0x000000B0
3	MEMORY_1	READ	1235680	ADDR=0xDEADBEEF
4	MEMORY_1	READ	1235781	ADDR=0xDEADBEEF

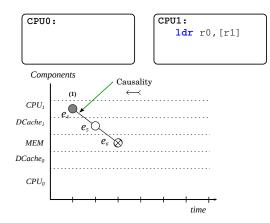
Context	Traces	Analysis	Experimentations	Conclusion
000	●○○○	oo		O
Traces				

- Set of events giving a view of the system behavior
- Usually generated per component
- Additional relations necessary

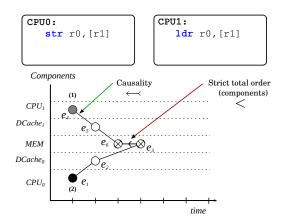
Event ID	Component ID	Type of Event	Cycle Number	Data
1	CPU_1	INSTRUCTION	1235678	PC=0x000000A0
2	CPU_2	INSTRUCTION	1235679	PC=0x000000B0
3	MEMORY_1	READ	1235680	ADDR=0xDEADBEEF
4	MEMORY_1	READ	1235781	ADDR=0xDEADBEEF

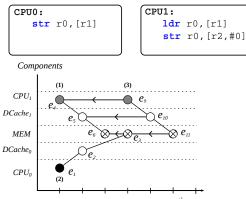


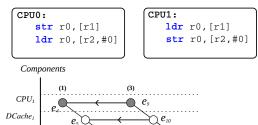
Context	Traces	Analysis	Experimentations	Conclusion
000	○●○○	00		o
Trace d	efinition			

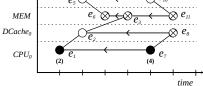

- Goal :
 - Capturing traces representing the parallel system behavior
- Définition : *T* = (*E*, <, ↔, <)
 - T : Traces
 - E : Events
 - Relations :
 - <: Strict total order of event within a given component
 - ← : Causality between events belonging to different components
 - < : Sytem total order based on a *shared* component
- Important feature:
 - No timestamping

Context	Traces	Analysis	Experimentations	Conclusion
000	○o●o	oo		O
Trace re	presentatio	า		

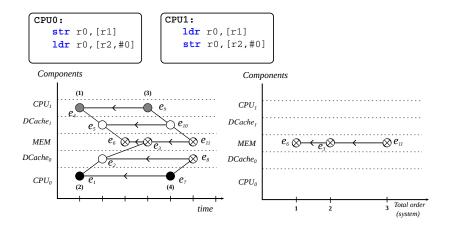

time


Context	Traces	Analysis	Experimentations	Conclusion
000	○o●o	00		o
Trace re	presentation	า		

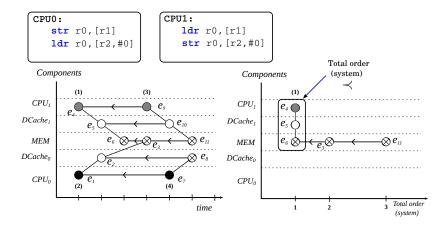

Context	Traces	Analysis	Experimentations	Conclusion
000	○o●o	00		o
Trace re	presentation	l		

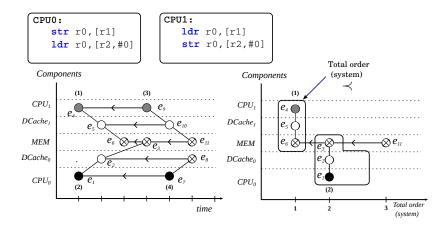


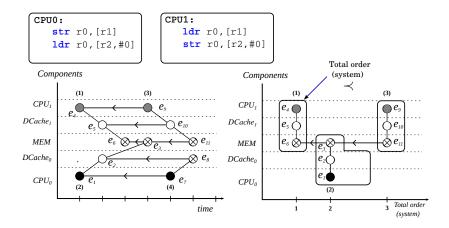
Context	Traces	Analysis	Experimentations	Conclusion
000	○○●○	00		o
Trace re	presentation	า		



Context	Traces	Analysis	Experimentations	Conclusion
000	○○●○	00		o
Trace re	presentation	า		

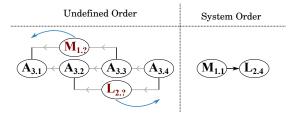



Context	Traces	Analysis	Experimentations	Conclusion
000	⊙o●o	00		o
-				


Context	Traces	Analysis	Experimentations	Conclusion
000	○o●o	00		o

Context	Traces	Analysis	Experimentations	Conclusion
000	○o●o	00		o

Context	Traces	Analysis	Experimentations	Conclusion
000	○o●o	00		o


Context	Traces	Analysis	Experimentations	Conclusion
000	○o●o	00		O

Context	Traces	Analysis	Experimentations	Conclusion
000	○○○●	00		O

Forward and Rewind operations

- Goal
 - Assign total order to causality chains without shared component
- Operations
 - Rewind (<<>>) : Total order assign to previous shared event
 - Forward (>>>): Total order assign to next shared event

Context	Traces	Analysis	Experimentations	Conclusion

Trace based cache-coherence analysis

- Goal :
 - Detect cache coherence issues in SW cache coherence protocols
- Example :
 - Write-through
 - Reads : from cache or memory
 - Write : always into memory, also in cache on hit
- Formalize problem as a graph analysis per memory block
- Express set of rules that check for violation

Context	Traces	Analysis	Experimentations	Conclusion
000	0000	00	00000	0
write-th	rough rule			

- Checks if a cache accesses "decayed" data
- Exemple :
 - 3 processors (id = 1,2,3)
 - 1 memory (id = 4)

●
$$S_i < L_j$$

② $\nexists S_k$ such that $S_i < S_k < L_j$ with $k \in C$
③ $\nexists L_j^*$ such that $S_i < L_j^* < L_j$ with $L_j^* \neq L_j$
④ $\nexists L_j$ such that $L_j \leftarrow A_l$

Context	Traces	Analysis	Experimentations	Conclusion
000	0000	●○		o
write-th	<i>rough</i> rule			

- Checks if a cache accesses "decayed" data
- Exemple :
 - 3 processors (id = 1,2,3)
 - 1 memory (id = 4)

●
$$S_i < L_j$$

② $\nexists S_k$ such that $S_i < S_k < L_j$ with $k \in C$
③ $\nexists L_j^*$ such that $S_i < L_j^* < L_j$ with $L_j^* \neq L_j$
④ $\# L_j$ such that $L_j \leftarrow A_l$

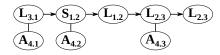
Context	Traces	Analysis	Experimentations	Conclusion
000	0000	●○		o
write-th	rough rule			

- Checks if a cache accesses "decayed" data
- Exemple :
 - 3 processors (id = 1,2,3)
 - 1 memory (id = 4)

●
$$S_i < L_j$$

② $\nexists S_k$ such that $S_i < S_k < L_j$ with $k \in C$
③ $\nexists L_j^*$ such that $S_i < L_j^* < L_j$ with $L_j^* \neq L_j$
④ $\nexists L_j$ such that $L_j \leftarrow A_l$

Context	Traces	Analysis	Experimentations	Conclusion
000	0000	●○		o
write-th	rough rule			


- Checks if a cache accesses "decayed" data
- Exemple :
 - 3 processors (id = 1,2,3)
 - 1 memory (id = 4)

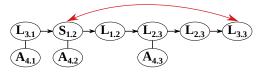
$$\begin{array}{c} \textbf{L}_{3.1} \rightarrow \textbf{S}_{1.2} \rightarrow \textbf{L}_{1.2} \\ \textbf{A}_{4.1} \quad \textbf{A}_{4.2} \end{array}$$

●
$$S_i < L_j$$

② $\nexists S_k$ such that $S_i < S_k < L_j$ with $k \in C$
③ $\nexists L_j^*$ such that $S_i < L_j^* < L_j$ with $L_j^* \neq L_j$
④ $\nexists L_j$ such that $L_j \leftarrow A_l$

Context	Traces	Analysis	Experimentations	Conclusion
000	0000	●○		o
write-th	<i>rough</i> rule			

- Checks if a cache accesses "decayed" data
- Exemple :
 - 3 processors (id = 1,2,3)
 - 1 memory (id = 4)

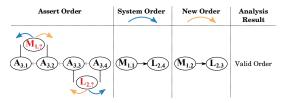


●
$$S_i < L_j$$

② $\nexists S_k$ such that $S_i < S_k < L_j$ with $k \in C$
③ $\nexists L_j^*$ such that $S_i < L_j^* < L_j$ with $L_j^* \neq L_j$
④ $\nexists L_j$ such that $L_j \leftarrow A_l$

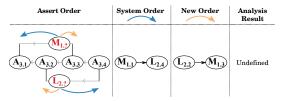
Context	Traces	Analysis	Experimentations	Conclusion
write-thr	ouah rule			

- Checks if a cache accesses "decayed" data
- Exemple :
 - 3 processors (id = 1,2,3)
 - 1 memory (id = 4)

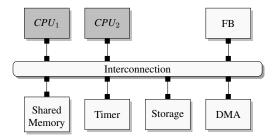

Violation detected!

●
$$S_i < L_j$$

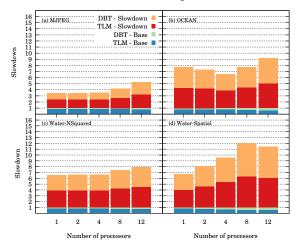
② $\nexists S_k$ such that $S_i < S_k < L_j$ with $k \in C$
③ $\nexists L_j^*$ such that $S_i < L_j^* < L_j$ with $L_j^* \neq L_j$
④ $\nexists L_j$ such that $L_j \leftarrow A_l$


Context	Traces	Analysis	Experimentations	Conclusion
000	0000	○●		O
False po	ositives			

- Assignments due to forward (\ll) and rewind (\gg)
- Removal
 - If problem, apply opposite operation
 - If order is identical, the problem is confirmed
 - Otherwise, we don't know
- Limitation
 - Possible false positives do exist

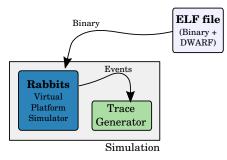

Context	Traces	Analysis	Experimentations	Conclusion
000	0000	○●		O
False po	ositives			

- Assignments due to forward (\ll) and rewind (\gg)
- Removal
 - If problem, apply opposite operation
 - If order is identical, the problem is confirmed
 - Otherwise, we don't know
- Limitation
 - Possible false positives do exist

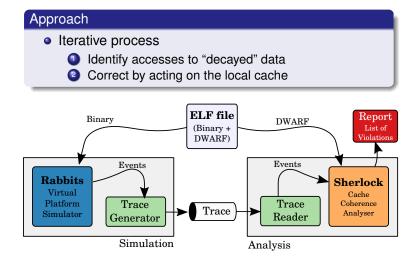

Context	Traces	Analysis	Experimentations	Conclusion
000	0000	00	●0000	o
Virtual	orototype			

- Hardware
 - Rabbits simulator with enhanced trace capture
 - Processors : up to 16 Cortex-A9
- Software
 - Parallel MJPEG/Splash-2 (all pthread based)

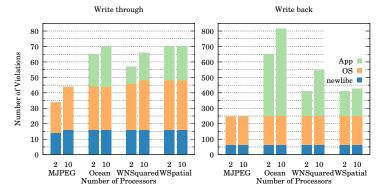
Context	Traces	Analysis	Experimentations	Conclusion
000	0000	oo	0e000	o
Trace gei	neration			

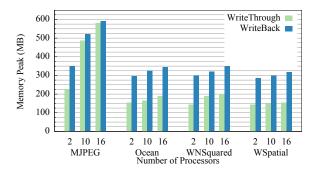

Simulation slowdown due to trace generation

Context	Traces	Analysis	Experimentations	Conclusion
000	0000	00		o
Trace a	nalvsis			


Detect and correct cache coherence violations

Context	Traces	Analysis	Experimentations	Conclusion			
000	0000	00	00000	O			
Trace analysis							


• Detect and correct cache coherence violations


Cache coherence analysis: Violations

• Number of violations detected and corrected per program (Initial hypothesis: hardware coherent shared memory)

- Analysis time is O(k * |E|) with $k \ll |E|$
- Analysis is done online: Peak memory usage limited

Context 000	Traces	Analysis 00	Experimentations	Conclusion			
Conclusion							

VP produced execution traces:

- Require lots of resources
 - Take time to be generated
 - Need huge disk space to be stored
 - Need time and memory to be analysed
- But are very useful
 - Allow to obtain traces with relations between events
 - Simplifies analysis greatly: NP hard consistency model violation problem becomes linear with read/write mapping
 - · Permit online analysis for some problem