
On the analysis of virtual platform generated
traces

Frédéric Pétrot and Marcos Cunha

Laboratoire TIMA / System Level Synthesis Group
Université Grenoble Alpes

2/18

Context Traces Analysis Experimentations Conclusion

Outline

1 Context

2 Traces

3 Analysis

4 Experimentations

5 Conclusion

3/18

Context Traces Analysis Experimentations Conclusion

New architectures, new challenges

“The processor is the NAND gate of the future”,
dixit Chris Rowen

Not quite there yet, but getting close, ...

3/18

Context Traces Analysis Experimentations Conclusion

New architectures, new challenges

“The processor is the NAND gate of the future”,
dixit Chris Rowen

Not quite there yet, but getting close, ...

Tilera (Tile-Mx)

100 processors on a chip

64-bit ARM

Chipwide hardware cache
coherency

Power Consumption
≈ 100 W

3/18

Context Traces Analysis Experimentations Conclusion

New architectures, new challenges

“The processor is the NAND gate of the future”,
dixit Chris Rowen

Not quite there yet, but getting close, ...

Kalray (MPPA - Bostan)

256 processors on chip
(16 clusters of 16 PE)

64-bit 3-issue VLIW

Caches but no hardware
cache coherency at all

Power Consumption ≈ 25 W

4/18

Context Traces Analysis Experimentations Conclusion

Some SW bugs in Multi/Many core architectures

Architecture specific bugs
Hardware Software integration mismatches
Bad understanding or wrong usage of specific mechanisms by
the application/os developper
Typical example: access to cached variable that may have
been modified

Functional bugs
Due (mainly) to parallel execution
Potentially sporadic since depending on the execution order
(non determinism)

5/18

Context Traces Analysis Experimentations Conclusion

Trace based debug and analysis

Binary Code

10101
01010
10101
01010

Virtual Platform Trace

5/18

Context Traces Analysis Experimentations Conclusion

Trace based debug and analysis

Binary Code

10101
01010
10101
01010

Virtual Platform Trace

Dynamic
Analysis

Source Code

if(a=1){
 /*good*/
 b="ok";}
else{
 /*bad*/
 b="er";}

Trace

Report

Binary Code

10101
01010
10101
01010

Runtime Stats
 DCache miss: 78065
 ICache miss: 20015
 Memory access: 124360
Coverage: 80%
 File: Input.c: 70%
 Func: Parse: 100%
 Read: 80%
 File: Output.c: 90%
 Func: Write: 100%
 Printf: 80%

6/18

Context Traces Analysis Experimentations Conclusion

Traces

Set of events giving a view of the system behavior

Usually generated per component

Additional relations necessary

6/18

Context Traces Analysis Experimentations Conclusion

Traces

Set of events giving a view of the system behavior

Usually generated per component

Additional relations necessary

CPU2

CPU1
time

Components

1

3 4

2

MEM

6/18

Context Traces Analysis Experimentations Conclusion

Traces

Set of events giving a view of the system behavior

Usually generated per component

Additional relations necessary

CPU2

CPU1
time

Components

1

3 4

2

MEM

6/18

Context Traces Analysis Experimentations Conclusion

Traces

Set of events giving a view of the system behavior

Usually generated per component

Additional relations necessary

CPU2

CPU1
time

Components

1

3 4

2

MEM

7/18

Context Traces Analysis Experimentations Conclusion

Trace definition

Goal :
Capturing traces representing the parallel system behavior

Définition : T = (E, <,�,≺)
T : Traces
E : Events
Relations :

< : Strict total order of event within a given component
� : Causality between events belonging to different
components
≺ : Sytem total order based on a shared component

Important feature:
No timestamping

8/18

Context Traces Analysis Experimentations Conclusion

Trace representation

CPU0: CPU1:

CPU1

DCache1

DCache0

time

Components

CPU0

MEM

8/18

Context Traces Analysis Experimentations Conclusion

Trace representation

CPU0: CPU1:

CPU1

DCache1

DCache0

time

Components

CPU0

MEM

e4

e5

e6

(1)

ldr r0,[r1]

Causality

8/18

Context Traces Analysis Experimentations Conclusion

Trace representation

CPU0: CPU1:

CPU1

DCache1

DCache0

time

Components

CPU0

MEM

e4

e5

e6

(1)

ldr r0,[r1]

Causality

e1

e3

e2

(2)

str r0,[r1]

Strict total order
 (components)

8/18

Context Traces Analysis Experimentations Conclusion

Trace representation

CPU0: CPU1:

CPU1

DCache1

DCache0

time

Components

CPU0

MEM

e4

e5

e6

(1)

ldr r0,[r1]

e1

e3

e2

(2)

str r0,[r1]
str r0,[r2,#0]

e9

e10

e11

(3)

8/18

Context Traces Analysis Experimentations Conclusion

Trace representation

CPU0: CPU1:

CPU1

DCache1

DCache0

time

Components

CPU0

MEM

e4

e5

e6

(1)

ldr r0,[r1]

e1

e3

e2

(2)

str r0,[r1]
str r0,[r2,#0]

e9

e10

e11

(3)

e7

e8

(4)

ldr r0,[r2,#0]

8/18

Context Traces Analysis Experimentations Conclusion

Trace representation

CPU0: CPU1:

CPU1

DCache1

DCache0

time

Components

CPU0

MEM

e4

e5

e6

(1)

ldr r0,[r1]

e1

e3

e2

(2)

str r0,[r1]
str r0,[r2,#0]

e9

e10

e11

(3)

e7

e8

(4)

ldr r0,[r2,#0]

CPU1

DCache1

CPU0

MEM

Components

1 2 3 Total order
(system)

DCache0

e11e3
e6

8/18

Context Traces Analysis Experimentations Conclusion

Trace representation

CPU0: CPU1:

CPU1

DCache1

DCache0

time

Components

CPU0

MEM

e4

e5

e6

(1)

ldr r0,[r1]

e1

e3

e2

(2)

str r0,[r1]
str r0,[r2,#0]

e9

e10

e11

(3)

e7

e8

(4)

ldr r0,[r2,#0]

CPU1

DCache1

CPU0

MEM

Components

1 2 3 Total order
(system)

DCache0

e11e3
e6

e4

e5

(1)

Total order
(system)

8/18

Context Traces Analysis Experimentations Conclusion

Trace representation

CPU0: CPU1:

CPU1

DCache1

DCache0

time

Components

CPU0

MEM

e4

e5

e6

(1)

ldr r0,[r1]

e1

e3

e2

(2)

str r0,[r1]
str r0,[r2,#0]

e9

e10

e11

(3)

e7

e8

(4)

ldr r0,[r2,#0]

CPU1

DCache1

CPU0

MEM

Components

1 2 3 Total order
(system)

DCache0

e11e3
e6

e4

e5

(1)

Total order
(system)

(2)

e1

e2

8/18

Context Traces Analysis Experimentations Conclusion

Trace representation

CPU0: CPU1:

CPU1

DCache1

DCache0

time

Components

CPU0

MEM

e4

e5

e6

(1)

ldr r0,[r1]

e1

e3

e2

(2)

str r0,[r1]
str r0,[r2,#0]

e9

e10

e11

(3)

e7

e8

(4)

ldr r0,[r2,#0]

CPU1

DCache1

CPU0

MEM

Components

1 2 3 Total order
(system)

DCache0

e11e3
e6

e4

e5

(1)

Total order
(system)

(2)

e1

e2

(3)

e9

e10

8/18

Context Traces Analysis Experimentations Conclusion

Trace representation

CPU0: CPU1:

CPU1

DCache1

DCache0

time

Components

CPU0

MEM

e4

e5

e6

(1)

ldr r0,[r1]

e1

e3

e2

(2)

str r0,[r1]
str r0,[r2,#0]

e9

e10

e11

(3)

e7

e8

(4)

ldr r0,[r2,#0]

CPU1

DCache1

CPU0

MEM

Components

1 2 3 Total order
(system)

DCache0

e11e3
e6

e4

e5

(1)

Total order
(system)

(2)

e1

e2

(3)

e9

e10

(4)

e7

e8

9/18

Context Traces Analysis Experimentations Conclusion

Forward and Rewind operations

Goal
Assign total order to causality chains without shared
component

Operations
Rewind (≪) : Total order assign to previous shared event
Forward (≫) : Total order assign to next shared event

Undefined Order System Order

A3.1 A3.2 A3.3 A3.4

M1.?

L2.?

M1.1 L2.4

10/18

Context Traces Analysis Experimentations Conclusion

Trace based cache-coherence analysis

Goal :
Detect cache coherence issues in SW cache coherence
protocols

Example :
Write-through

Reads : from cache or memory
Write : always into memory, also in cache on hit

Formalize problem as a graph analysis per memory block

Express set of rules that check for violation

11/18

Context Traces Analysis Experimentations Conclusion

write-through rule

Checks if a cache accesses “decayed” data
Exemple :

3 processors (id = 1,2,3)
1 memory (id = 4)

Verification rule
1 Si ≺ Lj
2 @Sk such that Si ≺ Sk ≺ Lj with k ∈ C
3 @L∗j such that Si ≺ L∗j ≺ Lj with L∗j , Lj

4 @Lj such that Lj � Al

11/18

Context Traces Analysis Experimentations Conclusion

write-through rule

Checks if a cache accesses “decayed” data
Exemple :

3 processors (id = 1,2,3)
1 memory (id = 4)

L3.1

A4.1

Verification rule
1 Si ≺ Lj
2 @Sk such that Si ≺ Sk ≺ Lj with k ∈ C
3 @L∗j such that Si ≺ L∗j ≺ Lj with L∗j , Lj

4 @Lj such that Lj � Al

11/18

Context Traces Analysis Experimentations Conclusion

write-through rule

Checks if a cache accesses “decayed” data
Exemple :

3 processors (id = 1,2,3)
1 memory (id = 4)

L3.1

A4.1

S1.2

A4.2

Verification rule
1 Si ≺ Lj
2 @Sk such that Si ≺ Sk ≺ Lj with k ∈ C
3 @L∗j such that Si ≺ L∗j ≺ Lj with L∗j , Lj

4 @Lj such that Lj � Al

11/18

Context Traces Analysis Experimentations Conclusion

write-through rule

Checks if a cache accesses “decayed” data
Exemple :

3 processors (id = 1,2,3)
1 memory (id = 4)

L3.1

A4.1

S1.2

A4.2

L1.2

Verification rule
1 Si ≺ Lj
2 @Sk such that Si ≺ Sk ≺ Lj with k ∈ C
3 @L∗j such that Si ≺ L∗j ≺ Lj with L∗j , Lj

4 @Lj such that Lj � Al

11/18

Context Traces Analysis Experimentations Conclusion

write-through rule

Checks if a cache accesses “decayed” data
Exemple :

3 processors (id = 1,2,3)
1 memory (id = 4)

L3.1

A4.1

S1.2

A4.2

L1.2 L2.3L2.3

A4.3

Verification rule
1 Si ≺ Lj
2 @Sk such that Si ≺ Sk ≺ Lj with k ∈ C
3 @L∗j such that Si ≺ L∗j ≺ Lj with L∗j , Lj

4 @Lj such that Lj � Al

11/18

Context Traces Analysis Experimentations Conclusion

write-through rule

Checks if a cache accesses “decayed” data
Exemple :

3 processors (id = 1,2,3)
1 memory (id = 4)

L3.1

A4.1

S1.2

A4.2

L1.2 L2.3L2.3

A4.3

Violation detected!

L3.3

Verification rule
1 Si ≺ Lj
2 @Sk such that Si ≺ Sk ≺ Lj with k ∈ C
3 @L∗j such that Si ≺ L∗j ≺ Lj with L∗j , Lj

4 @Lj such that Lj � Al

12/18

Context Traces Analysis Experimentations Conclusion

False positives

Assignments due to forward (≪) and rewind (≫)

Removal
If problem, apply opposite operation
If order is identical, the problem is confirmed
Otherwise, we don’t know

Limitation
Possible false positives do exist

Analysis
Result

Assert Order New OrderSystem Order

Valid Order

M1.?

A3.1 A3.2 A3.3 A3.4

L2.?

M1.1 L2.4 M1.2 L2.3

12/18

Context Traces Analysis Experimentations Conclusion

False positives

Assignments due to forward (≪) and rewind (≫)

Removal
If problem, apply opposite operation
If order is identical, the problem is confirmed
Otherwise, we don’t know

Limitation
Possible false positives do exist

M1.1 L2.4 M1.3L2.2 UndefinedA3.1 A3.2 A3.3 A3.4

M1.?

L2.?

Analysis
Result

Assert Order New OrderSystem Order

13/18

Context Traces Analysis Experimentations Conclusion

Virtual prototype

Hardware
Rabbits simulator with enhanced trace capture
Processors : up to 16 Cortex-A9

Software
Parallel MJPEG/Splash-2 (all pthread based)

Interconnection

CPU1 CPU2 FB

Shared
Memory

Timer Storage DMA

14/18

Context Traces Analysis Experimentations Conclusion

Trace generation

Simulation slowdown due to trace generation

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16

Sl
ow

do
w

n
(a) MJPEG

TLM - Base
DBT - Base

 TLM - Slowdown
 DBT - Slowdown (b) OCEAN

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1 2 4 8 12

Sl
ow

do
w

n

Number of processors

(c) Water-NSquared

1 2 4 8 12

Number of processors

(d) Water-Spatial

15/18

Context Traces Analysis Experimentations Conclusion

Trace analysis

Detect and correct cache coherence violations

Approach
Iterative process

1 Identify accesses to “decayed” data
2 Correct by acting on the local cache

Simulation

ELF file
(Binary +
DWARF)

Events

Binary

Rabbits
Virtual

Platform
Simulator

Trace
Generator

15/18

Context Traces Analysis Experimentations Conclusion

Trace analysis

Detect and correct cache coherence violations

Approach
Iterative process

1 Identify accesses to “decayed” data
2 Correct by acting on the local cache

Simulation

ELF file
(Binary +
DWARF)

Events

Binary

Rabbits
Virtual

Platform
Simulator

Trace
Generator

Analysis

Report
List of

Violations

Events

DWARF

Trace
Trace

Reader

Sherlock
Cache

Coherence
Analyser

16/18

Context Traces Analysis Experimentations Conclusion

Cache coherence analysis: Violations

Number of violations detected and corrected per program
(Initial hypothesis: hardware coherent shared memory)

 0

 10

 20

 30

 40

 50

 60

 70

 80

2 10 2 10 2 10 2 10

N
um

be
r

of
 V

io
la

ti
on

s

Number of Processors

Write through

WSpatialWNSquaredOceanMJPEG

 0

 100

 200

 300

 400

 500

 600

 700

 800

2 10 2 10 2 10 2 10

Number of Processors

Write back

newlibc
OS

App

WSpatialWNSquaredOceanMJPEG

17/18

Context Traces Analysis Experimentations Conclusion

Cache coherence analysis: Complexity

Analysis time is O(k ∗ |E |) with k � |E |

Analysis is done online: Peak memory usage limited

0

100

200

300

400

500

600

2 10 16 2 10 16 2 10 16 2 10 16

M
em

or
y

P
ea

k
(M

B
)

Number of Processors

WriteThrough
WriteBack

WSpatialWNSquaredOceanMJPEG

18/18

Context Traces Analysis Experimentations Conclusion

Conclusion

VP produced execution traces:
Require lots of resources

Take time to be generated
Need huge disk space to be stored
Need time and memory to be analysed

But are very useful
Allow to obtain traces with relations between events
Simplifies analysis greatly:
NP hard consistency model violation problem becomes linear
with read/write mapping
Permit online analysis for some problem

	Context
	Traces
	Analysis
	Experimentations
	Conclusion

