
Persistent Memory Architecture
Research at UCSC –

Workload Characterization and
Hardware Support for Persistence

Jishen Zhao
jishen.zhao@ucsc.edu
Computer Engineering

UC Santa Cruz

July 12, 2016

What is persistent memory?

2

• Persistent memory memory storage

NVRAM

2

NVRAM is here…

2016
NVRAM

STT-RAM, PCM, ReRAM,
NVDIMM, 3D Xpoint, etc.

3

Design Opportunities with NVRAM

•  Allow in-memory data structures to become permanent immediately
•  Demonstrated 32x speedup compared with using storage devices

[Condit+ SOSP’09, Volos+ ASPLOS’11, Coburn+ ASPLOS’11,
Venkataraman+ FAST’11]

CPU
DRAM

Disk/Flash

Memory
Load/store
Not persistent

Storage
Fopen(), fread(), fwrite(),…
Persistent

CPU
NVRAM

Load/store
Persistent

Persistent memory

4

Executing Applications in Persistent
Memory

5
Jeff Moyer, “Persistent memory in Linux,” SNIA NVM Summit, 2016.

open()
mmap()

•  Workload characterization
•  Exploring persistent memory use

cases
•  Identifying system bottlenecks
•  Implications to software/hardware

design
•  System software

•  Efficient fault tolerance and data
persistence mechanisms

•  Hardware
•  Developing storage accelerators
•  Redefining the boundary between

software and hardware

Our research –
At the software/hardware boundary

DRAM

CPU

NVRAM

SSD/HDD

System Software
(VM, File System,
Database System)

Applications

ISA

6

Workload Characterization from a
hardware perspective
• Motivation

•  Persistent memory is managed by both hardware and
software

•  Most prior works only profile software statistics, e.g.,
system throughput

• Objectives
•  Help system designers better understand performance

bottlenecks
•  Help application designers better utilize persistent

memory hardware
•  Approach

•  Profile hardware and software counter statistics
•  Instrument application and system software to obtain

insights at micro-architecture level
7

Hardware and software configurations
•  CPU: Intel Xeon CPU E5-2620 v3
•  Memory: 12GB of pmem + 4GB of main memory

partitioned on DRAM (memmap)
•  Operating system: Linux 4.4.0 kernel
•  Profiling Tools

•  Linux Perf: collecting software and hardware counter statistics
•  Intel Pin 3.0 instrumentation tool with in-house Pintools

•  File systems evaluated
•  Ext4 : Journaling of metadata, running on RAMDisk
•  Ext4-DAX :

•  Journaling of metadata and bypass page cache with DAX
•  NOVA

•  Nonvolatile accelerated log-structured file system [Li+ FAST’16]
8

About DAX
•  What is DAX?

•  “Direct Access”
•  Enabling efficient Linux support for persistent memory
•  Allowing file system requests to bypass the page cache

allocated in DRAM and directly access NVRAM via loads
and stores

•  How does Ext4-DAX work?
•  DAX maps storage components directly into userspace
•  * True DAX is not supported in Linux yet – accesses still go

through DRAM, i.e., directly swaps the pages between DRAM
main memory and NVRAM storage.

•  Example of file systems with DAX capability
•  Ext4-DAX, XFS-DAX, Btrfs-DAX à Fedora
•  Intel PMFS
•  NOVA

9

Current workloads
•  Filebench (a widely-used benchmark suite designed for

evaluating file system performance)
•  Fileserver, Webproxy, WebServer, Varmail

•  FFSB (Flexible Filesystem benchmark)
•  Can configure read/write ratio and number of threads

•  Bonnie
•  measuring file system performance by invoking putc() and

getc()
•  File compression/decompression: tar/untar, zip/unzip
•  TPC-C running with MySQL

•  A database online transaction processing workload
•  Write intensive, with 63.7% of writes

•  In-house micro-benchmarks
•  * Applications are compiled with static linking and stored in NVRAM

(pmem) region 10

Workload throughput

14000	
15000	
16000	
17000	
18000	
19000	
20000	
21000	

Fileserver	 Webproxy	 Webserver	 Varmail	

ext4	 ext4-DAX	 NOVA	

Th
ro
ug
hp

ut
		

(o
pe

ra
-o

ns
	p
er
	se

co
nd

)	

0	

1E+09	

2E+09	

3E+09	

4E+09	

5E+09	

Ex
ec
u&

on
	&
m
e	
in
	n
an

os
eo

cn
ds
	

NOVA	 EXT4-DAX	 EXT4	

TAR	UNTAR	
0	

20	

40	

60	

80	

100	

120	 NOVA	 EXT4-DAX	 EXT4	

Tr
an
sa
c6
on

s	p
er
	te

n	
se
co
nd

s	

TPC-C	

TPC-C 11

Correlation between system performance
and hardware behavior

Name Write% Dataset (MB) Amount (MB) Description
Fileserver
Webproxy
Webserver
Varmail
TPC-C
Zip
Unzip
FFSB
Bonnie

Table 1: Storage workload description.

fairly flat namespace hierarchy with a directory width
of 1,000,000, i.e., all files are deployed in a large di-
rectory. The workload has 100 threads with a 5:1
read/write ratio. The ratio of metadata to data
operations is 1:3.

• Webserver emulates simple web server I/O activi-
ties. It performs a sequence of open, read, and close
opeartions in a directory tree on 100,000 files with an
average size of 100KB. The directory width is 20. We
employ 100 threads. All the threads append 8K to a
common log file. Read/write of this workload is 10:1.

• Varmail emulates the access pattern of a mail
server. The operations of this workload in-
clude create-append-synchronization, read-append-
synchronization, reads, and deletes. We configured a
directory with a width of one million. It stores 1000
files with a median file size of 100MB. This workload
has 16 threads. The read/write ratio is 1:1.

TPC-C. TPC-C [5] is a database online transaction pro-
cessing workload running with MySQL database []. It is
write-intensive, with 63.7% of writes.
File Compression and Decompression. Zip archives
and compresses files. Unzip extracts compressed
archives. We use them to compress and decompress two
MPEG-4 files, each has a size of 2.3GB.
FFSB. The Flexible Filesystem Benchmark (FFSB) [3]
generates customizable workloads to measure file system
performance. It employs Pthreads to support multiple
groups of threads that can access multiple file systems.
We use it to generate a set of workloads that perform
reads/re-reads, writes/re-writes, and appends to file sys-
tems with various read/write ratios and random accesses.
We employ two threads to perform 64MB random read
and write operations on 100 files with various sizes, rang-
ing from 4KB to 100MB.
Bonnie. Bonnie64 [1] measures file system performance
by invoking putc() and get() macro operations to file
systems. In addition, it can create four child processes
that execute 4000 seeks to random locations in the file.
10% of these seeks may change the block that they have
read and re-write it. Our experiments perform putc()

-1.5	
-1	

-0.5	
0	

0.5	
1	

1.5	

dTLB	miss	rate	 iTLB	miss	rate	 LLC	load	miss	rate	
LLC	store	miss	rate	 Page	fault	rate	

Fileserver		Webproxy				Webserver				Varmail									Zip														Unzip											FFSB	

Co
rr
el
aF

on
	C
oe

ffi
ci
en

t	

Highly	correlated		
(standard	error	within	8%)	

Figure 1: Correlation between workload performance
and each hardware counter statistics.

and get(), and random seeks in 5GB files.

4 Microarchitecture Analysis

4.1 Correlation Between System Perfor-
mance and Hardware Behavior

Figure 7 plots the correlation between thoughput and
5 selected metrics among 6 benchmarks. x axis rep-
resent each benchmark. y axis is the correlation co-
efficient between thoughput and each metric. We
make following observations. First, dTLB miss rate
shows high negative correlation with thoughput among
all the benchmarks.(operation throughput for fileserver
webproxy webserver and varmail, compression and de-
compression throughput for zip and unzip) Second, all
the metrics are deeply correlated to thoughput in the file-
server results. Tird, expect webserver, in all the other
benchmarks, dTLB miss rate is highly correlated to the
throughput. Fourth, page fault is least correlated to the
performance. A major reason is the most page fault in
DAX file system is fake page fault. DAX is handles page
fault as exception. Since the NVM has same level la-
tency as DRAM, page fault does not suffer from a lot of
overhead as before. Last, LLC miss rate needs to be cat-
egorized. In current system, since the main memory is
pure DRAM, all the miss on the LLC visit DRAM. But
in the hybrid memory, LLC miss could lead to the access
to DRAM or NVM. Even though we partitioned pmem0
to simulated hybrid memory in current system, current
tool cannot distinguish the LLC leads to pmem0 access

4

12

0	
400000	
800000	

1200000	
1600000	
2000000	
2400000	 ext4	 ext4-DAX	 NOVA	

Th
ro
ug
hp

ut
		

(T
ra
ns
ac
>o

ns
/s
)	

R=100%,		
W=0%	

R=90%,		
W=10%	

R=80%,		
W=20%	

R=70%,		
W=30%	

R=60%,		
W=40%	

R=0%,		
W=100%	

0.0	
0.5	
1.0	
1.5	
2.0	
2.5	
3.0	

putc()	
throughput	

Block	
writes	

Block	
create	
change	
rewrite	

getc()	 Efficient	
block	reads	

Effec@ve	
random	
seek	rate	

ext4-dax	 ext4	 nova	

Throughput vs. Write Intensity

Bonnie (read:write = 1:1)

FFSB

13 N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

13000	

15000	

17000	

19000	

21000	

DRAM	 classic	
NVM	
model	

50%	 60%	 70%	 80%	 90%	

ext4	 ext4-DAX	 NOVA	

Buffer	hit	rate	in	revised	NVRAM	model�

Tr
an
sa
cI
on

s	p
er
	se

co
nd
�

The impact of workload locality
•  NVRAM devices may or may not have an on-chip buffer

13000	

15000	

17000	

19000	

21000	

4KB	DRAM	 4KB	 2KB	 1KB	 512B	 256B	

ext4	 ext4-DAX	 NOVA	

Buffer	size	in	revised	NVRAM	model�

Tr
an
sa
cH
on

s	p
er
	se

co
nd
�

14

•  Workload characterization
•  Exploring persistent memory use

cases
•  Identifying system bottlenecks
•  Implications to software/hardware

design
•  System software

•  Efficient fault tolerance and data
persistence mechanisms

•  Hardware
•  Developing storage accelerators
•  Redefining the boundary between

software and hardware

Our research –
At the software/hardware boundary

DRAM

CPU

NVRAM

SSD/HDD

System Software
(VM, File System,
Database System)

Applications

ISA

15

Logging Acceleration (executive summary)
•  Problem

•  Traditional software-based logging imposes substantial
overhead in persistent memory

•  Even with either undo or redo logging
•  Not to say undo+redo logging as used in many modern

database systems
•  Changes in software interface add burden on programmers

•  Solution
•  Hardware-based logging accelerators
•  Leverage existing hardware information (otherwise largely

wasted)
•  Results

•  3.3X performance improvement
•  Simplified software interface
•  Low hardware overhead

16

17

Logging (Journaling) in
Persistent Memory

(Maintaining Atomicity)

Root

A

B C D
Log

Root

A

B C D
C’ D’

NVRAM Memory
Barrier

Root

A

B C D
C’ D’

Size of one store

Performance overhead of software logging

Zhao+, “Kiln: Closing the performance gap between systems with
and without persistence support,” MICRO 2013.

18

Software interface of software logging
•  Memory barriers, strict ordering constraints, and cache

flushing all needed for ensuring data persistence

19

Our software interface
•  Memory barriers, strict ordering constraints, and cache

flushing all needed for ensuring data persistence
Hardware support for

20

How does it work?

•  Writes to persistent memory automatically trigger a write to

the log – a software-allocated circular buffer
•  Log information includes TxID, address, undo cache line

value, and redo cache line value
•  Leveraging cache hit/miss handling process to update the log
•  Log updates get buffered in the processor

hit
Core
A’1

L1$
Write-allocate

Lower-level$

Object A – the old value of A is {A1, A2, …}, hte new value of A is {A’1, A’2, ...}

L1$

Core Processor
Core …

Last-level Cache

L1$
… …

Memory Controllers

C
ac

he

C
on

tro
lle

rs

DRAM NVRAM
Log
(circular
buffer)

Log
Buffer

1	

Log Buffer (FIFO)

 A’1 A1 A’2 A2

2	 2	

NVRAM
(Nonvolatile)

Log
(circular
buffer)

Processor
(Volatile)

Bypass
Caches

3	

Tx_commit

5	

A1	

Core

A1	

A’1 miss 1	
L1$

2	

2	

Hit in a
lower-level

cache
2	

Bypass
Caches Log Buffer (FIFO)

NVRAM
(Nonvolatile)

Log
(circular
buffer)

3	

Tx_commit

5	

(a) (b) (c)

4	
4	

TxID, addr(A) TxID, addr(A)
Cache line size

Cache line size Cache line size

 A’1 A1 A’2 A2

Figure 4: Overview of the proposed hardware-driven logging in persistent memory. (a) Architecture
overview. (b) Hardware-driven logging on a write hit in L1 cache. (c) Hardware-driven logging on a
write miss in L1 cache.

nents [20, 29]. On-chip transaction bu↵ers/caches can
be susceptible for overflow issues [20]. Therefore, elimi-
nating them can substantially improve persistent mem-
ory performance and flexibility.

Our logging scheme builds on three design princi-
ples. First, we update the log using the data values
and hardware information that are transferred among
CPU caches during write hit, write-back, and write-
allocate. As such, we significantly reduce the number
of load/store instruction executed in the pipeline and
cache/memory tra�c of loading values from persistent
data. Second, we invoke force-write-backs individual
cache lines only when necessary, avoiding force-write-
backs of cache lines too early (earlier than the corre-
sponding log record is likely to be overwritten soon). By
invoking force-write-backs in hardware, we can address
the persistence risk in multithreading scenario. Third,
our hardware-driven logging scheme allows us to provide
write-order control with transaction commit blocks. As
such, we eliminate the pipeline overhead of executing
the memory barrier instructions. § 3.5 illustrates steps
of transaction execution using our design.

3.1 Architecture Overview
Figure 4(a) depicts an overview of our processor and

memory architecture. We assume that all storage com-
ponents in the processor are volatile. The main mem-
ory consists of DRAM and NVRAM, which are both
deployed on the processor-memory bus.

Failure Model. The data in DRAM or CPU caches is
lost across system reboots, while data in NVRAM re-
mains. Our design focuses on maintaining persistence of
user-defined critical data stored in NVRAM. After fail-
ures, the system can recover critical data structures by
replaying the log in NVRAM. The DRAM can be used
to store data without persistence requirement, such as
stacks and data transfer bu↵ers [10, 20].

Persistent Memory Transactions. Similar to most
prior persistent memory designs [10, 14], we employ
transactions as a software abstraction to enforce per-

sistence of critical data. A transaction is a group of in-
structions that need to appear as an atomic unit (all or
nothing) in the face of system failures. Figure 3(b) illus-
trates a simple example code of one transaction with our
design (detailed software interface design is discussed in
§ 4). The transaction defines object A as a piece of crit-
ical data that needs persistence guarantee. Compared
with traditional logging-based persistent memory trans-
actions (Figure 3(a)), our transactions eliminate log-
ging functions, cache force-write-back instructions, and
memory barrier instructions.

The Log. We employ a fixed size single-consumer/single-
producer Lamport circular bu↵er [36] as the log. It can
be reserved and truncated by persistent memory sys-
tem software. Our hardware mechanisms perform log
appends. We adopt circular bu↵er, because it allows si-
multaneous appends and truncates without locking [36,
10]. Each log record consists of a set of log entries,
each can be a record header (including the transaction
ID and the address of the corresponding persistent data
object) or cache-line-size undo/redo values. We adopt
a single bit to distinguish the record header from the
rest of entries. We also adopt a torn bit per log en-
try to indicate the completion of each log update [10].
The log is shared by all threads of an application to
simplify system recovery. Whereas our logging scheme
maintains log appends by hardware, persistent memory
can expose the log to system software which maintains
log truncation and system recovery.

Uncacheable Log and Log Bu↵er. Log is typically
used during system recovery or transaction abort; it is
less likely reused during application execution. In addi-
tion, it is imperative to commit the data written to the
log to NVRAM in store-order. Therefore, we make the
log uncacheable. This is inline with prior works, which
directly write log updates into write-combine bu↵er (WCB)
in commodity processors [10, 37] to coalesce multiple
stores to the same cache line. We employ a five-entry
log bu↵er (FIFO) in the memory controller to improve
write performance of log updates similar to WCB. The

4

hit
Core
A’1

L1$
Write-allocate

Lower-level$

Object A – the old value of A is {A1, A2, …}, hte new value of A is {A’1, A’2, ...}

L1$

Core Processor
Core …

Last-level Cache

L1$
… …

Memory Controllers

C
ac

he

C
on

tro
lle

rs

DRAM NVRAM
Log
(circular
buffer)

Log
Buffer

1	

Log Buffer (FIFO)

 A’1 A1 A’2 A2

2	 2	

NVRAM
(Nonvolatile)

Log
(circular
buffer)

Processor
(Volatile)

Bypass
Caches

3	

Tx_commit

5	

A1	

Core

A1	

A’1 miss 1	
L1$

2	

2	

Hit in a
lower-level

cache
2	

Bypass
Caches Log Buffer (FIFO)

NVRAM
(Nonvolatile)

Log
(circular
buffer)

3	

Tx_commit

5	

(a) (b) (c)

4	
4	

TxID, addr(A) TxID, addr(A)
Cache line size

Cache line size Cache line size

 A’1 A1 A’2 A2

Figure 4: Overview of the proposed hardware-driven logging in persistent memory. (a) Architecture
overview. (b) Hardware-driven logging on a write hit in L1 cache. (c) Hardware-driven logging on a
write miss in L1 cache.

nents [20, 29]. On-chip transaction bu↵ers/caches can
be susceptible for overflow issues [20]. Therefore, elimi-
nating them can substantially improve persistent mem-
ory performance and flexibility.

Our logging scheme builds on three design princi-
ples. First, we update the log using the data values
and hardware information that are transferred among
CPU caches during write hit, write-back, and write-
allocate. As such, we significantly reduce the number
of load/store instruction executed in the pipeline and
cache/memory tra�c of loading values from persistent
data. Second, we invoke force-write-backs individual
cache lines only when necessary, avoiding force-write-
backs of cache lines too early (earlier than the corre-
sponding log record is likely to be overwritten soon). By
invoking force-write-backs in hardware, we can address
the persistence risk in multithreading scenario. Third,
our hardware-driven logging scheme allows us to provide
write-order control with transaction commit blocks. As
such, we eliminate the pipeline overhead of executing
the memory barrier instructions. § 3.5 illustrates steps
of transaction execution using our design.

3.1 Architecture Overview
Figure 4(a) depicts an overview of our processor and

memory architecture. We assume that all storage com-
ponents in the processor are volatile. The main mem-
ory consists of DRAM and NVRAM, which are both
deployed on the processor-memory bus.

Failure Model. The data in DRAM or CPU caches is
lost across system reboots, while data in NVRAM re-
mains. Our design focuses on maintaining persistence of
user-defined critical data stored in NVRAM. After fail-
ures, the system can recover critical data structures by
replaying the log in NVRAM. The DRAM can be used
to store data without persistence requirement, such as
stacks and data transfer bu↵ers [10, 20].

Persistent Memory Transactions. Similar to most
prior persistent memory designs [10, 14], we employ
transactions as a software abstraction to enforce per-

sistence of critical data. A transaction is a group of in-
structions that need to appear as an atomic unit (all or
nothing) in the face of system failures. Figure 3(b) illus-
trates a simple example code of one transaction with our
design (detailed software interface design is discussed in
§ 4). The transaction defines object A as a piece of crit-
ical data that needs persistence guarantee. Compared
with traditional logging-based persistent memory trans-
actions (Figure 3(a)), our transactions eliminate log-
ging functions, cache force-write-back instructions, and
memory barrier instructions.

The Log. We employ a fixed size single-consumer/single-
producer Lamport circular bu↵er [36] as the log. It can
be reserved and truncated by persistent memory sys-
tem software. Our hardware mechanisms perform log
appends. We adopt circular bu↵er, because it allows si-
multaneous appends and truncates without locking [36,
10]. Each log record consists of a set of log entries,
each can be a record header (including the transaction
ID and the address of the corresponding persistent data
object) or cache-line-size undo/redo values. We adopt
a single bit to distinguish the record header from the
rest of entries. We also adopt a torn bit per log en-
try to indicate the completion of each log update [10].
The log is shared by all threads of an application to
simplify system recovery. Whereas our logging scheme
maintains log appends by hardware, persistent memory
can expose the log to system software which maintains
log truncation and system recovery.

Uncacheable Log and Log Bu↵er. Log is typically
used during system recovery or transaction abort; it is
less likely reused during application execution. In addi-
tion, it is imperative to commit the data written to the
log to NVRAM in store-order. Therefore, we make the
log uncacheable. This is inline with prior works, which
directly write log updates into write-combine bu↵er (WCB)
in commodity processors [10, 37] to coalesce multiple
stores to the same cache line. We employ a five-entry
log bu↵er (FIFO) in the memory controller to improve
write performance of log updates similar to WCB. The

4

L1 cache hit – we get all that needed for undo+redo log

22

How does it work?

•  Writes to persistent memory automatically trigger a write to

the log – a software-allocated circular buffer
•  Log information includes TxID, address, undo cache line

value, and redo cache line value
•  Leveraging cache hit/miss handling process to update the log
•  Log updates get buffered in the processor

hit
Core
A’1

L1$
Write-allocate

Lower-level$

Object A – the old value of A is {A1, A2, …}, hte new value of A is {A’1, A’2, ...}

L1$

Core Processor
Core …

Last-level Cache

L1$
… …

Memory Controllers

C
ac

he

C
on

tro
lle

rs

DRAM NVRAM
Log
(circular
buffer)

Log
Buffer

1	

Log Buffer (FIFO)

 A’1 A1 A’2 A2

2	 2	

NVRAM
(Nonvolatile)

Log
(circular
buffer)

Processor
(Volatile)

Bypass
Caches

3	

Tx_commit

5	

A1	

Core

A1	

A’1 miss 1	
L1$

2	

2	

Hit in a
lower-level

cache
2	

Bypass
Caches Log Buffer (FIFO)

NVRAM
(Nonvolatile)

Log
(circular
buffer)

3	

Tx_commit

5	

(a) (b) (c)

4	
4	

TxID, addr(A) TxID, addr(A)
Cache line size

Cache line size Cache line size

 A’1 A1 A’2 A2

Figure 4: Overview of the proposed hardware-driven logging in persistent memory. (a) Architecture
overview. (b) Hardware-driven logging on a write hit in L1 cache. (c) Hardware-driven logging on a
write miss in L1 cache.

nents [20, 29]. On-chip transaction bu↵ers/caches can
be susceptible for overflow issues [20]. Therefore, elimi-
nating them can substantially improve persistent mem-
ory performance and flexibility.

Our logging scheme builds on three design princi-
ples. First, we update the log using the data values
and hardware information that are transferred among
CPU caches during write hit, write-back, and write-
allocate. As such, we significantly reduce the number
of load/store instruction executed in the pipeline and
cache/memory tra�c of loading values from persistent
data. Second, we invoke force-write-backs individual
cache lines only when necessary, avoiding force-write-
backs of cache lines too early (earlier than the corre-
sponding log record is likely to be overwritten soon). By
invoking force-write-backs in hardware, we can address
the persistence risk in multithreading scenario. Third,
our hardware-driven logging scheme allows us to provide
write-order control with transaction commit blocks. As
such, we eliminate the pipeline overhead of executing
the memory barrier instructions. § 3.5 illustrates steps
of transaction execution using our design.

3.1 Architecture Overview
Figure 4(a) depicts an overview of our processor and

memory architecture. We assume that all storage com-
ponents in the processor are volatile. The main mem-
ory consists of DRAM and NVRAM, which are both
deployed on the processor-memory bus.

Failure Model. The data in DRAM or CPU caches is
lost across system reboots, while data in NVRAM re-
mains. Our design focuses on maintaining persistence of
user-defined critical data stored in NVRAM. After fail-
ures, the system can recover critical data structures by
replaying the log in NVRAM. The DRAM can be used
to store data without persistence requirement, such as
stacks and data transfer bu↵ers [10, 20].

Persistent Memory Transactions. Similar to most
prior persistent memory designs [10, 14], we employ
transactions as a software abstraction to enforce per-

sistence of critical data. A transaction is a group of in-
structions that need to appear as an atomic unit (all or
nothing) in the face of system failures. Figure 3(b) illus-
trates a simple example code of one transaction with our
design (detailed software interface design is discussed in
§ 4). The transaction defines object A as a piece of crit-
ical data that needs persistence guarantee. Compared
with traditional logging-based persistent memory trans-
actions (Figure 3(a)), our transactions eliminate log-
ging functions, cache force-write-back instructions, and
memory barrier instructions.

The Log. We employ a fixed size single-consumer/single-
producer Lamport circular bu↵er [36] as the log. It can
be reserved and truncated by persistent memory sys-
tem software. Our hardware mechanisms perform log
appends. We adopt circular bu↵er, because it allows si-
multaneous appends and truncates without locking [36,
10]. Each log record consists of a set of log entries,
each can be a record header (including the transaction
ID and the address of the corresponding persistent data
object) or cache-line-size undo/redo values. We adopt
a single bit to distinguish the record header from the
rest of entries. We also adopt a torn bit per log en-
try to indicate the completion of each log update [10].
The log is shared by all threads of an application to
simplify system recovery. Whereas our logging scheme
maintains log appends by hardware, persistent memory
can expose the log to system software which maintains
log truncation and system recovery.

Uncacheable Log and Log Bu↵er. Log is typically
used during system recovery or transaction abort; it is
less likely reused during application execution. In addi-
tion, it is imperative to commit the data written to the
log to NVRAM in store-order. Therefore, we make the
log uncacheable. This is inline with prior works, which
directly write log updates into write-combine bu↵er (WCB)
in commodity processors [10, 37] to coalesce multiple
stores to the same cache line. We employ a five-entry
log bu↵er (FIFO) in the memory controller to improve
write performance of log updates similar to WCB. The

4

hit
Core
A’1

L1$
Write-allocate

Lower-level$

Object A – the old value of A is {A1, A2, …}, hte new value of A is {A’1, A’2, ...}

L1$

Core Processor
Core …

Last-level Cache

L1$
… …

Memory Controllers

C
ac

he

C
on

tro
lle

rs

DRAM NVRAM
Log
(circular
buffer)

Log
Buffer

1	

Log Buffer (FIFO)

 A’1 A1 A’2 A2

2	 2	

NVRAM
(Nonvolatile)

Log
(circular
buffer)

Processor
(Volatile)

Bypass
Caches

3	

Tx_commit

5	

A1	

Core

A1	

A’1 miss 1	
L1$

2	

2	

Hit in a
lower-level

cache
2	

Bypass
Caches Log Buffer (FIFO)

NVRAM
(Nonvolatile)

Log
(circular
buffer)

3	

Tx_commit

5	

(a) (b) (c)

4	
4	

TxID, addr(A) TxID, addr(A)
Cache line size

Cache line size Cache line size

 A’1 A1 A’2 A2

Figure 4: Overview of the proposed hardware-driven logging in persistent memory. (a) Architecture
overview. (b) Hardware-driven logging on a write hit in L1 cache. (c) Hardware-driven logging on a
write miss in L1 cache.

nents [20, 29]. On-chip transaction bu↵ers/caches can
be susceptible for overflow issues [20]. Therefore, elimi-
nating them can substantially improve persistent mem-
ory performance and flexibility.

Our logging scheme builds on three design princi-
ples. First, we update the log using the data values
and hardware information that are transferred among
CPU caches during write hit, write-back, and write-
allocate. As such, we significantly reduce the number
of load/store instruction executed in the pipeline and
cache/memory tra�c of loading values from persistent
data. Second, we invoke force-write-backs individual
cache lines only when necessary, avoiding force-write-
backs of cache lines too early (earlier than the corre-
sponding log record is likely to be overwritten soon). By
invoking force-write-backs in hardware, we can address
the persistence risk in multithreading scenario. Third,
our hardware-driven logging scheme allows us to provide
write-order control with transaction commit blocks. As
such, we eliminate the pipeline overhead of executing
the memory barrier instructions. § 3.5 illustrates steps
of transaction execution using our design.

3.1 Architecture Overview
Figure 4(a) depicts an overview of our processor and

memory architecture. We assume that all storage com-
ponents in the processor are volatile. The main mem-
ory consists of DRAM and NVRAM, which are both
deployed on the processor-memory bus.

Failure Model. The data in DRAM or CPU caches is
lost across system reboots, while data in NVRAM re-
mains. Our design focuses on maintaining persistence of
user-defined critical data stored in NVRAM. After fail-
ures, the system can recover critical data structures by
replaying the log in NVRAM. The DRAM can be used
to store data without persistence requirement, such as
stacks and data transfer bu↵ers [10, 20].

Persistent Memory Transactions. Similar to most
prior persistent memory designs [10, 14], we employ
transactions as a software abstraction to enforce per-

sistence of critical data. A transaction is a group of in-
structions that need to appear as an atomic unit (all or
nothing) in the face of system failures. Figure 3(b) illus-
trates a simple example code of one transaction with our
design (detailed software interface design is discussed in
§ 4). The transaction defines object A as a piece of crit-
ical data that needs persistence guarantee. Compared
with traditional logging-based persistent memory trans-
actions (Figure 3(a)), our transactions eliminate log-
ging functions, cache force-write-back instructions, and
memory barrier instructions.

The Log. We employ a fixed size single-consumer/single-
producer Lamport circular bu↵er [36] as the log. It can
be reserved and truncated by persistent memory sys-
tem software. Our hardware mechanisms perform log
appends. We adopt circular bu↵er, because it allows si-
multaneous appends and truncates without locking [36,
10]. Each log record consists of a set of log entries,
each can be a record header (including the transaction
ID and the address of the corresponding persistent data
object) or cache-line-size undo/redo values. We adopt
a single bit to distinguish the record header from the
rest of entries. We also adopt a torn bit per log en-
try to indicate the completion of each log update [10].
The log is shared by all threads of an application to
simplify system recovery. Whereas our logging scheme
maintains log appends by hardware, persistent memory
can expose the log to system software which maintains
log truncation and system recovery.

Uncacheable Log and Log Bu↵er. Log is typically
used during system recovery or transaction abort; it is
less likely reused during application execution. In addi-
tion, it is imperative to commit the data written to the
log to NVRAM in store-order. Therefore, we make the
log uncacheable. This is inline with prior works, which
directly write log updates into write-combine bu↵er (WCB)
in commodity processors [10, 37] to coalesce multiple
stores to the same cache line. We employ a five-entry
log bu↵er (FIFO) in the memory controller to improve
write performance of log updates similar to WCB. The

4

L1 cache miss – we get all that needed during “write-allocate”

23

Force cache writeback when necessary
•  Need to flush CPU caches, when

•  A log entry is almost overwritten by new log updates
•  But the associated data still remains in CPU caches

head

tail

Circular
Log

Buffer

24

Results
 •  McSimA+ simulator running

•  Persistent memory micro-benchmarks
•  A real workload – a persistent version of memcached

•  System throughput improved by 1.45x~1.60x on average
•  Memcached throughput improved by 3.3x
•  Memory traffic reduced by 2.36x~3.12x
•  Dynamic memory energy improvement by 1.53x~1.72x
•  Hardware overhead

•  17 bytes of flip-flops
•  1-bit cache tag information per cache line
•  Multiplexers

25

•  Workload characterization
•  Exploring persistent memory use

cases
•  Identifying system bottlenecks
•  Implications to software/hardware

design
•  System software

•  Efficient fault tolerance and data
persistence mechanisms

•  Hardware
•  Developing storage accelerators
•  Redefining the boundary between

software and hardware

Summary

DRAM

CPU

NVRAM

SSD/HDD

System Software
(VM, File System,
Database System)

Applications

ISA

þ

þ
26

UCSC STABLE (SysTem and
Architecture lab on scalaBility,
reLiability, and Energy-efficiency)

27

Email: Jishen.zhao@ucsc.edu
https://users.soe.ucsc.edu/~jzhao/

Persistent Memory Architecture
Research at UCSC –

Workload Characterization and
Hardware Support for Persistence

Jishen Zhao
jishen.zhao@ucsc.edu
Computer Engineering

UC Santa Cruz

July 12, 2016

