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What is persistent memory?

| NVRAM
* Persistent memory == memory - storage
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Design Opportunities with NVRAM

Memory
Load/store
Not persistent :>
@ Storage Persistent memory
= g : Load/store
open(), fread(), fwrite(),... Persistent
Persistent ersisten

* Allow in-memory data structures to become permanent immedia

 Demonstrated 32x speedup compared with using storage devic
[Condit+ SOSP’09, Volos+ ASPLOS’ 11, Coburn+ ASPLOS11,
Venkataraman+ FAST'11]




Executing Applications in Persistent
Memory

PM-Aware :MMU :
File System Mippings ¢

..............

Jeff Moyer, “Persistent memory in Linux,” SNIA NVM Summit, 2016.




Our research —

At the software/hardware boundary

s Workload characterization

- Exploring persistent memory use
cases

* |dentifying system bottlenecks

 Implications to software/hardware
design

- System software
K - Efficient fault tolerance and data

persistence mechanisms
* Hardware

! Developing storage accelerators

- Redefining the boundary between
software and hardware

Applications

System Software
(VM, File System,
Database System)

ISA
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Workload Characterization from a
hardware perspective

* Motivation

 Persistent memory is managed by both hardware and
software

» Most prior works only profile software statistics, e.g.,
system throughput

* Objectives
» Help system designers better understand performance
bottlenecks
» Help application designers better utilize persistent
memory hardware
* Approach
* Profile hardware and software counter statistics

* Instrument application and system software to obtain ( 7 }
iInsights at micro-architecture level




Hardware and configurations

CPU: Intel Xeon CPU E5-2620 v3

Memory: 12GB of pmem + 4GB of main memory
partitioned on DRAM (memmap)

. : Linux 4.4.0 kernel

Linux Perf: collecting software and hardware counter statistics
Intel Pin 3.0 instrumentation tool with in-house Pintools

Ext4 : Journaling of metadata, running on RAMDisk

Ext4DAX]

Journaling of metadata and bypass page cache with DAX

NOVA
Nonvolatile accelerated log-structured file system [Li+ FAST'16]




About DAX

* What is DAX?
* “Direct Access”
- Enabling efficient Linux support for persistent memory

 Allowing file system requests to bypass the page cache
allocated in DRAM and directly access NVRAM via loads

and stores

 How does Ext4-DAX work?

+ DAX maps storage components directly into userspace

« *True DAX is not supported in Linux yet — accesses still go
through DRAM, i.e., directly swaps the pages between DRAM
main memory and NVRAM storage.

« Example of file systems with DAX capability
« Ext4-DAX, XFS-DAX, Btrfs-DAX - Fedora
* Intel PMFS
- NOVA




Current workloads

Filebench (a widely-used benchmark suite designed for
evaluating file system performance)

* Fileserver, Webproxy, WebServer, Varmail

FFSB (Flexible Filesystem benchmark)

« Can configure read/write ratio and number of threads
Bonnie

* measuring file system performance by invoking putc() and

getc()
File compression/decompression: tar/untar, zip/unzip

TPC-C running with MySQL

- A database online transaction processing workload
« Write intensive, with 63.7% of writes

In-house micro-benchmarks

« *Applications are compiled with static linking and stored in NVRAM ( 10 }

(pmem) region




Workload throughput

B ext4 Mext4-DAX I NOVA

Throughput
(operations per second)

Fileserver Webproxy Webserver Varmail
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Correlation between system performance
and hardware behavior

® dTLB miss rate B TLB miss rate A LLC load miss rate
X LLC store miss rate O Page fault rate

Correlation Coefficient

————————————————————————————————————————————————————————————

Fileserver Webproxy Webserver Varmail Zip Unzip FFSB
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Throughput vs. Write Intensity
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The impact of workload locality

- NVRAM devices may or may not have an on-chip buffer
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Our research —

At the software/hardware boundary

* Workload characterization

» Exploring persistent memory use
cases

* |dentifying system bottlenecks
 Implications to software/hardware
design
- System software

+ Efficient fault tolerance and data
persistence mechanisms

 Hardware

! Developing storage accelerators

- Redefining the boundary between
software and hardware

Applications

System Software
(VM, File System,
Database System)

ISA
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Logging Acceleration (executive summary)

 Problem

 Traditional software-based logging imposes substantial
overhead in persistent memory

Even with either undo or redo logging

Not to say undo+redo logging as used in many modern
database systems

« Changes in software interface add burden on programmers

- Hardware-based logging accelerators

 Leverage existing hardware information (otherwise largely
wasted)

 Results

« 3.3X performance improvement
- Simplified software interface
- Low hardware overhead




Logging (Journaling) in
Persistent Memory
(Maintaining Atomicity)
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Performance overhead of software logging
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Zhao+, “Kiln: Closing the performance gap between systems with
and without persistence support,” MICRO 2013.




Software interface of software logging

- Memory barriers, strict ordering constraints, and cache
flushing all needed for ensuring data persistence

tx_begin();
write Log( address( A

old val( A ),
new val( A -

write( A );

tx_commit();

clwb( address( A ) )3




Our software interface
Y S e e | |
| ing data persistence
Hardware support for

tx_begin();

write Log( address( A ),
old val( A ),
new_val( A )

)s

memfence(); tx_begin();

write( A ); write( A );
tx commit();

tx_commit();

clwb( address( A ) );




How does it work?

L1 cache hit — we ¢
* Writes to persistent memory automatically trigger a write to

the log — a software-allocated circular buffer
 Log information includes

 Leveraging cache hit/miss handling process to update the log
* Log updates get buffered in the processor
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How does it work?

. san%es !o permsLnt memory automaitically trigger a write to

the log — a software-allocated circular buffer
 Log information includes

 Leveraging cache hit/miss handling process to update the log
* Log updates get buffered in the processor
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Force cache writeback when necessary

* Need to flush CPU caches, when
* Alog entry is almost overwritten by new log updates
* But the associated data still remains in CPU caches

head —

tail




Results

McSimA+ simulator running

* Persistent memory micro-benchmarks

* Areal workload — a persistent version of memcached
System throughput improved by 1.45x~1.60x on average
Memcached throughput improved by@

Memory traffic reduced by 2.36x~3.12x

Dynamic memory energy improvement by 1.53x~1.72x
Hardware overhead

« 17 bytes of flip-flops

 1-bit cache tag information per cache line

» Multiplexers




Summary

V1. Workload characterization

- Exploring persistent memory use Applications
cases
* |dentifying system bottlenecks System Software
- Implications to software/hardware | (VM, File System,
design Database System)
- System software ISA

- Efficient fault tolerance and data
persistence mechanisms “

- Hardware
I - Developing storage accelerators || i
- Redefining the boundary between |——

software and hardware




UCSC STABLE (SysTem and
Architecture lab on scalaBility,
reLiability, and Energy-efficiency)

Email: Jishen.zhao@ucsc.edu
https://users.soe.ucsc.edu/~jzhao/
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