Persistent Memory Architecture
Research at UCSC —
Workload Characterization and
Hardware Support for Persistence

Jishen Zhao
jishen.zhao@ucsc.edu
Computer Engineering

UC Santa Cruz

July 12, 2016

What is persistent memory?

| NVRAM
* Persistent memory == memory - storage

NVRAM iIs here...

STT-RAM, PCM, ReRAM,
NVDIMM, 3D Xpomt eic. RSRES
= é‘*

A TIMELINE OF MEMORY '
CLASS INTRODUCTIONS - Q \\

‘%%, 1989
NAND Flash
(” 84 Memon

NORF[sh

/ 1971 Memory

() 1966 EPROM
DRAM
1961

. . IT'S BEEN DECADES SINC
phacl MAINSTREAM M

Ram

e

- _

2016 [
NVRAM

Design Opportunities with NVRAM

Memory
Load/store
Not persistent :>
@ Storage Persistent memory
= g : Load/store
open(), fread(), fwrite(),... Persistent
Persistent ersisten

* Allow in-memory data structures to become permanent immedia

 Demonstrated 32x speedup compared with using storage devic
[Condit+ SOSP’09, Volos+ ASPLOS’ 11, Coburn+ ASPLOS11,
Venkataraman+ FAST'11]

Executing Applications in Persistent
Memory

PM-Aware :MMU :
File System Mippings ¢

..............

Jeff Moyer, “Persistent memory in Linux,” SNIA NVM Summit, 2016.

Our research —

At the software/hardware boundary

s Workload characterization

- Exploring persistent memory use
cases

* |dentifying system bottlenecks

 Implications to software/hardware
design

- System software
K - Efficient fault tolerance and data

persistence mechanisms
* Hardware

! Developing storage accelerators

- Redefining the boundary between
software and hardware

Applications

System Software
(VM, File System,
Database System)

ISA

e
\ i
\

Workload Characterization from a
hardware perspective

* Motivation

 Persistent memory is managed by both hardware and
software

» Most prior works only profile software statistics, e.g.,
system throughput

* Objectives
» Help system designers better understand performance
bottlenecks
» Help application designers better utilize persistent
memory hardware
* Approach
* Profile hardware and software counter statistics

* Instrument application and system software to obtain (7 }
iInsights at micro-architecture level

Hardware and configurations

CPU: Intel Xeon CPU E5-2620 v3

Memory: 12GB of pmem + 4GB of main memory
partitioned on DRAM (memmap)

. : Linux 4.4.0 kernel

Linux Perf: collecting software and hardware counter statistics
Intel Pin 3.0 instrumentation tool with in-house Pintools

Ext4 : Journaling of metadata, running on RAMDisk

Ext4DAX]

Journaling of metadata and bypass page cache with DAX

NOVA
Nonvolatile accelerated log-structured file system [Li+ FAST'16]

About DAX

* What is DAX?
* “Direct Access”
- Enabling efficient Linux support for persistent memory

 Allowing file system requests to bypass the page cache
allocated in DRAM and directly access NVRAM via loads

and stores

 How does Ext4-DAX work?

+ DAX maps storage components directly into userspace

« *True DAX is not supported in Linux yet — accesses still go
through DRAM, i.e., directly swaps the pages between DRAM
main memory and NVRAM storage.

« Example of file systems with DAX capability
« Ext4-DAX, XFS-DAX, Btrfs-DAX - Fedora
* Intel PMFS
- NOVA

Current workloads

Filebench (a widely-used benchmark suite designed for
evaluating file system performance)

* Fileserver, Webproxy, WebServer, Varmail

FFSB (Flexible Filesystem benchmark)

« Can configure read/write ratio and number of threads
Bonnie

* measuring file system performance by invoking putc() and

getc()
File compression/decompression: tar/untar, zip/unzip

TPC-C running with MySQL

- A database online transaction processing workload
« Write intensive, with 63.7% of writes

In-house micro-benchmarks

« *Applications are compiled with static linking and stored in NVRAM (10 }

(pmem) region

Workload throughput

B ext4 Mext4-DAX I NOVA

Throughput
(operations per second)

Fileserver Webproxy Webserver Varmail

(7]

e]

: w

§ B NOVA MEXT4-DAX [1EXT4 'g 120 B NOVA M EXT4-DAX [EXT4
2 4E+09 g 100 i I i
: wv)

H [

g 3E+09 ‘qf 50

£ 9 60

E 2E+09 S 40

c B

S 1E+09 g 20

5 [

o e 0

g o .

5 UNTAR TAR TPC-C

11

Correlation between system performance
and hardware behavior

® dTLB miss rate B TLB miss rate A LLC load miss rate
X LLC store miss rate O Page fault rate

Correlation Coefficient

——

Fileserver Webproxy Webserver Varmail Zip Unzip FFSB

-1.5

Throughput vs. Write Intensity

2400000 prsp

M ext4d Eext4-DAX T NOVA

£ 7 2000000
2 5 1600000
% S 1200000
2 2 800000 '
— E 400000 -
- 0 R=100%, R=90%, R=80%, R=70%, R=60%, R=0%,
W=0% W=10% W=20% W=30% W=40% W=100%
H
< 3.0 @ ext4-dax Hextd " nova
3 2.5 Bonnie (read:write = 1:1)
c 2.0
= 15
Q1.0
o I i RL
5 00 | |
Z putc() Block Block getc() Efficient Effective
throughput writes create block reads random
change seek rate

rewrite

The impact of workload locality

- NVRAM devices may or may not have an on-chip buffer

2 21000 Wextd Mextd-DAX © NOVA

© 19000 n | —

o

S 17000

£ 15000

A

& 13000

= DRAM classic 50% 60% 70% 80% 90%
NVM \ Y /
model Buffer hit rate in revised NVRAM model

2 21000

S W ext4 M ext4-DAX I NOVA

3 B

2 19000 |

Q

o

© 17000 - —

o

5

5 15000 —

=

= 13000 =

4KB DRAM 4K{3 2KB 1KB 512B 25}6B

Buffer size in reviseh NVRAM model

Our research —

At the software/hardware boundary

* Workload characterization

» Exploring persistent memory use
cases

* |dentifying system bottlenecks
 Implications to software/hardware
design
- System software

+ Efficient fault tolerance and data
persistence mechanisms

 Hardware

! Developing storage accelerators

- Redefining the boundary between
software and hardware

Applications

System Software
(VM, File System,
Database System)

ISA

—
- i
—

Logging Acceleration (executive summary)

 Problem

 Traditional software-based logging imposes substantial
overhead in persistent memory

Even with either undo or redo logging

Not to say undo+redo logging as used in many modern
database systems

« Changes in software interface add burden on programmers

- Hardware-based logging accelerators

 Leverage existing hardware information (otherwise largely
wasted)

 Results

« 3.3X performance improvement
- Simplified software interface
- Low hardware overhead

Logging (Journaling) in
Persistent Memory
(Maintaining Atomicity)

" NVRAM Root Root Memer Root
v Barrier v
N M N O
/Log C|D f”,’f’; C | D

/

Size of one store

Performance overhead of software logging

ORD OWR

120V

/

N W b

Memory Traffic vs.
16-Thread Native

—

Throughput vs.
16-Thread Native

o

Native Persistent Native Persistent
Memory Memory

Zhao+, “Kiln: Closing the performance gap between systems with
and without persistence support,” MICRO 2013.

Software interface of software logging

- Memory barriers, strict ordering constraints, and cache
flushing all needed for ensuring data persistence

tx_begin();
write Log(address(A

old val(A),
new val(A -

write(A);

tx_commit();

clwb(address(A))3

Our software interface
Y S e e | |
| ing data persistence
Hardware support for

tx_begin();

write Log(address(A),
old val(A),
new_val(A)

)s

memfence(); tx_begin();

write(A); write(A);
tx commit();

tx_commit();

clwb(address(A));

How does it work?

L1 cache hit — we ¢
* Writes to persistent memory automatically trigger a write to

the log — a software-allocated circular buffer
 Log information includes

 Leveraging cache hit/miss handling process to update the log
* Log updates get buffered in the processor

e Processor P("Zfigf;ec;r |
L1$) g Log e v 19 Tx_commit
- "t |65| Buffer
Last-level Cache “8 5 Bypass
5 > Caches © Lo Buffer (FIFO)
Memory Controllers / ,A’1 Al A, | A, .
@ il Cache line size ___'_Fﬁli):_a/_dEr_(,_A_) ___________ Q____Qggp_e_ﬂgg_size

i Log NVRAM ?coiz:ular
. DRAM || NVRAM (circular (Nonvolatile)
i buffer) buffer)

How does it work?

. san%es !o permsLnt memory automaitically trigger a write to

the log — a software-allocated circular buffer
 Log information includes

 Leveraging cache hit/miss handling process to update the log
* Log updates get buffered in the processor

Processor @ e
A misse > "
[L1 [o [V qg) x-commi
00 Log e A
o2
S92 Bufter / Write-allocateH_t _
1O S itin a
Last-level Cache O “ Lower-leve|$ lower-level
Bypass , cache
¢ Caches \e Log Buffer (FIFO)
Memory Controllers . v
@ @ oo e si / Ar | A | Ar | Ay
ache line size 7 S
, / TxiD, adarm) O _Cathe line size
| e NVRAM 199 (23 }
i DRAM || NVRAM (circular (Nonvolatile) (circular
i buffer) buffer)

Force cache writeback when necessary

* Need to flush CPU caches, when
* Alog entry is almost overwritten by new log updates
* But the associated data still remains in CPU caches

head —

tail

Results

McSimA+ simulator running

* Persistent memory micro-benchmarks

* Areal workload — a persistent version of memcached
System throughput improved by 1.45x~1.60x on average
Memcached throughput improved by@

Memory traffic reduced by 2.36x~3.12x

Dynamic memory energy improvement by 1.53x~1.72x
Hardware overhead

« 17 bytes of flip-flops

 1-bit cache tag information per cache line

» Multiplexers

Summary

V1. Workload characterization

- Exploring persistent memory use Applications
cases
* |dentifying system bottlenecks System Software
- Implications to software/hardware | (VM, File System,
design Database System)
- System software ISA

- Efficient fault tolerance and data
persistence mechanisms “

- Hardware
I - Developing storage accelerators || i
- Redefining the boundary between |——

software and hardware

UCSC STABLE (SysTem and
Architecture lab on scalaBility,
reLiability, and Energy-efficiency)

Email: Jishen.zhao@ucsc.edu
https://users.soe.ucsc.edu/~jzhao/

Persistent Memory Architecture
Research at UCSC —
Workload Characterization and
Hardware Support for Persistence

Jishen Zhao
jishen.zhao@ucsc.edu
Computer Engineering

UC Santa Cruz

July 12, 2016

