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What is persistent memory? 
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• Persistent memory       memory          storage 

 

NVRAM 
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NVRAM is here… 

2016 
NVRAM 

STT-RAM, PCM, ReRAM, 
NVDIMM, 3D Xpoint, etc. 
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Design Opportunities with NVRAM 

•  Allow in-memory data structures to become permanent immediately 
•  Demonstrated 32x speedup compared with using storage devices 

[Condit+ SOSP’09, Volos+ ASPLOS’11, Coburn+ ASPLOS’11,  
Venkataraman+ FAST’11] 
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Executing Applications in Persistent 
Memory 

5 
Jeff Moyer, “Persistent memory in Linux,” SNIA NVM Summit, 2016. 
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•  Workload characterization 
•  Exploring persistent memory use 

cases  
•  Identifying system bottlenecks 
•  Implications to software/hardware 

design 
•  System software 

•  Efficient fault tolerance and data 
persistence mechanisms 

•  Hardware 
•  Developing storage accelerators 
•  Redefining the boundary between 

software and hardware 

Our research –  
At the software/hardware boundary 

DRAM 

CPU 

NVRAM 

SSD/HDD 

System Software  
(VM, File System, 
Database System) 

Applications 

ISA 
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Workload Characterization from a 
hardware perspective 
• Motivation 

•  Persistent memory is managed by both hardware and 
software 

•  Most prior works only profile software statistics, e.g., 
system throughput 

• Objectives 
•  Help system designers better understand performance 

bottlenecks 
•  Help application designers better utilize persistent 

memory hardware 
•  Approach 

•  Profile hardware and software counter statistics 
•  Instrument application and system software to obtain 

insights at micro-architecture level  
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Hardware and software configurations 
•  CPU: Intel Xeon CPU E5-2620 v3 
•  Memory: 12GB of pmem + 4GB of main memory 

partitioned on DRAM (memmap) 
•  Operating system: Linux 4.4.0 kernel 
•  Profiling Tools 

•  Linux Perf: collecting software and hardware counter statistics 
•  Intel Pin 3.0 instrumentation tool with in-house Pintools 

•  File systems evaluated 
•  Ext4 : Journaling of metadata, running on RAMDisk 
•  Ext4-DAX :  

•  Journaling of metadata and bypass page cache with DAX 
•  NOVA  

•  Nonvolatile accelerated log-structured file system [Li+ FAST’16] 
8 



About DAX 
•  What is DAX? 

•  “Direct Access” 
•  Enabling efficient Linux support for persistent memory 
•  Allowing file system requests to bypass the page cache 

allocated in DRAM and directly access NVRAM via loads 
and stores 

•  How does Ext4-DAX work? 
•  DAX maps storage components directly into userspace 
•  * True DAX is not supported in Linux yet – accesses still go 

through DRAM, i.e., directly swaps the pages between DRAM 
main memory and NVRAM storage. 

•  Example of file systems with DAX capability 
•  Ext4-DAX, XFS-DAX, Btrfs-DAX à Fedora 
•  Intel PMFS 
•  NOVA 

9 



Current workloads 
•  Filebench (a widely-used benchmark suite designed for 

evaluating file system performance) 
•  Fileserver, Webproxy, WebServer, Varmail 

•  FFSB (Flexible Filesystem benchmark) 
•  Can configure read/write ratio and number of threads 

•  Bonnie 
•  measuring file system performance by invoking putc() and 

getc() 
•  File compression/decompression: tar/untar, zip/unzip 
•  TPC-C running with MySQL 

•  A database online transaction processing workload 
•  Write intensive, with 63.7% of writes  

•  In-house micro-benchmarks 
•  * Applications are compiled with static linking and stored in NVRAM 

(pmem) region 10 



Workload throughput 
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Correlation between system performance 
and hardware behavior  

Name Write% Dataset (MB) Amount (MB) Description
Fileserver
Webproxy
Webserver
Varmail
TPC-C
Zip
Unzip
FFSB
Bonnie

Table 1: Storage workload description.

fairly flat namespace hierarchy with a directory width
of 1,000,000, i.e., all files are deployed in a large di-
rectory. The workload has 100 threads with a 5:1
read/write ratio. The ratio of metadata to data
operations is 1:3.

• Webserver emulates simple web server I/O activi-
ties. It performs a sequence of open, read, and close
opeartions in a directory tree on 100,000 files with an
average size of 100KB. The directory width is 20. We
employ 100 threads. All the threads append 8K to a
common log file. Read/write of this workload is 10:1.

• Varmail emulates the access pattern of a mail
server. The operations of this workload in-
clude create-append-synchronization, read-append-
synchronization, reads, and deletes. We configured a
directory with a width of one million. It stores 1000
files with a median file size of 100MB. This workload
has 16 threads. The read/write ratio is 1:1.

TPC-C. TPC-C [5] is a database online transaction pro-
cessing workload running with MySQL database []. It is
write-intensive, with 63.7% of writes.
File Compression and Decompression. Zip archives
and compresses files. Unzip extracts compressed
archives. We use them to compress and decompress two
MPEG-4 files, each has a size of 2.3GB.
FFSB. The Flexible Filesystem Benchmark (FFSB) [3]
generates customizable workloads to measure file system
performance. It employs Pthreads to support multiple
groups of threads that can access multiple file systems.
We use it to generate a set of workloads that perform
reads/re-reads, writes/re-writes, and appends to file sys-
tems with various read/write ratios and random accesses.
We employ two threads to perform 64MB random read
and write operations on 100 files with various sizes, rang-
ing from 4KB to 100MB.
Bonnie. Bonnie64 [1] measures file system performance
by invoking putc() and get() macro operations to file
systems. In addition, it can create four child processes
that execute 4000 seeks to random locations in the file.
10% of these seeks may change the block that they have
read and re-write it. Our experiments perform putc()
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Figure 1: Correlation between workload performance
and each hardware counter statistics.

and get(), and random seeks in 5GB files.

4 Microarchitecture Analysis

4.1 Correlation Between System Perfor-
mance and Hardware Behavior

Figure 7 plots the correlation between thoughput and
5 selected metrics among 6 benchmarks. x axis rep-
resent each benchmark. y axis is the correlation co-
efficient between thoughput and each metric. We
make following observations. First, dTLB miss rate
shows high negative correlation with thoughput among
all the benchmarks.(operation throughput for fileserver
webproxy webserver and varmail, compression and de-
compression throughput for zip and unzip) Second, all
the metrics are deeply correlated to thoughput in the file-
server results. Tird, expect webserver, in all the other
benchmarks, dTLB miss rate is highly correlated to the
throughput. Fourth, page fault is least correlated to the
performance. A major reason is the most page fault in
DAX file system is fake page fault. DAX is handles page
fault as exception. Since the NVM has same level la-
tency as DRAM, page fault does not suffer from a lot of
overhead as before. Last, LLC miss rate needs to be cat-
egorized. In current system, since the main memory is
pure DRAM, all the miss on the LLC visit DRAM. But
in the hybrid memory, LLC miss could lead to the access
to DRAM or NVM. Even though we partitioned pmem0
to simulated hybrid memory in current system, current
tool cannot distinguish the LLC leads to pmem0 access

4
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•  Workload characterization 
•  Exploring persistent memory use 

cases  
•  Identifying system bottlenecks 
•  Implications to software/hardware 

design 
•  System software 

•  Efficient fault tolerance and data 
persistence mechanisms 

•  Hardware 
•  Developing storage accelerators 
•  Redefining the boundary between 

software and hardware 

Our research – 
At the software/hardware boundary 

DRAM 

CPU 

NVRAM 

SSD/HDD 

System Software  
(VM, File System, 
Database System) 

Applications 

ISA 
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Logging Acceleration (executive summary) 
•  Problem 

•  Traditional software-based logging imposes substantial 
overhead in persistent memory 

•  Even with either undo or redo logging 
•  Not to say undo+redo logging as used in many modern 

database systems 
•  Changes in software interface add burden on programmers 

•  Solution 
•  Hardware-based logging accelerators 
•  Leverage existing hardware information (otherwise largely 

wasted) 
•  Results 

•  3.3X performance improvement 
•  Simplified software interface 
•  Low hardware overhead 

16 
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Performance overhead of software logging 

Zhao+, “Kiln: Closing the performance gap between systems with 
and without persistence support,” MICRO 2013. 
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Software interface of software logging 
•  Memory barriers, strict ordering constraints, and cache 

flushing all needed for ensuring data persistence 

19 



Our software interface 
•  Memory barriers, strict ordering constraints, and cache 

flushing all needed for ensuring data persistence 
Hardware support for 

20 



How does it work? 
 
 
•  Writes to persistent memory automatically trigger a write to 

the log – a software-allocated circular buffer 
•  Log information includes TxID, address, undo cache line 

value, and redo cache line value 
•  Leveraging cache hit/miss handling process to update the log 
•  Log updates get buffered in the processor  
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Figure 4: Overview of the proposed hardware-driven logging in persistent memory. (a) Architecture
overview. (b) Hardware-driven logging on a write hit in L1 cache. (c) Hardware-driven logging on a
write miss in L1 cache.

nents [20, 29]. On-chip transaction bu↵ers/caches can
be susceptible for overflow issues [20]. Therefore, elimi-
nating them can substantially improve persistent mem-
ory performance and flexibility.

Our logging scheme builds on three design princi-
ples. First, we update the log using the data values
and hardware information that are transferred among
CPU caches during write hit, write-back, and write-
allocate. As such, we significantly reduce the number
of load/store instruction executed in the pipeline and
cache/memory tra�c of loading values from persistent
data. Second, we invoke force-write-backs individual
cache lines only when necessary, avoiding force-write-
backs of cache lines too early (earlier than the corre-
sponding log record is likely to be overwritten soon). By
invoking force-write-backs in hardware, we can address
the persistence risk in multithreading scenario. Third,
our hardware-driven logging scheme allows us to provide
write-order control with transaction commit blocks. As
such, we eliminate the pipeline overhead of executing
the memory barrier instructions. § 3.5 illustrates steps
of transaction execution using our design.

3.1 Architecture Overview
Figure 4(a) depicts an overview of our processor and

memory architecture. We assume that all storage com-
ponents in the processor are volatile. The main mem-
ory consists of DRAM and NVRAM, which are both
deployed on the processor-memory bus.

Failure Model. The data in DRAM or CPU caches is
lost across system reboots, while data in NVRAM re-
mains. Our design focuses on maintaining persistence of
user-defined critical data stored in NVRAM. After fail-
ures, the system can recover critical data structures by
replaying the log in NVRAM. The DRAM can be used
to store data without persistence requirement, such as
stacks and data transfer bu↵ers [10, 20].

Persistent Memory Transactions. Similar to most
prior persistent memory designs [10, 14], we employ
transactions as a software abstraction to enforce per-

sistence of critical data. A transaction is a group of in-
structions that need to appear as an atomic unit (all or
nothing) in the face of system failures. Figure 3(b) illus-
trates a simple example code of one transaction with our
design (detailed software interface design is discussed in
§ 4). The transaction defines object A as a piece of crit-
ical data that needs persistence guarantee. Compared
with traditional logging-based persistent memory trans-
actions (Figure 3(a)), our transactions eliminate log-
ging functions, cache force-write-back instructions, and
memory barrier instructions.

The Log. We employ a fixed size single-consumer/single-
producer Lamport circular bu↵er [36] as the log. It can
be reserved and truncated by persistent memory sys-
tem software. Our hardware mechanisms perform log
appends. We adopt circular bu↵er, because it allows si-
multaneous appends and truncates without locking [36,
10]. Each log record consists of a set of log entries,
each can be a record header (including the transaction
ID and the address of the corresponding persistent data
object) or cache-line-size undo/redo values. We adopt
a single bit to distinguish the record header from the
rest of entries. We also adopt a torn bit per log en-
try to indicate the completion of each log update [10].
The log is shared by all threads of an application to
simplify system recovery. Whereas our logging scheme
maintains log appends by hardware, persistent memory
can expose the log to system software which maintains
log truncation and system recovery.

Uncacheable Log and Log Bu↵er. Log is typically
used during system recovery or transaction abort; it is
less likely reused during application execution. In addi-
tion, it is imperative to commit the data written to the
log to NVRAM in store-order. Therefore, we make the
log uncacheable. This is inline with prior works, which
directly write log updates into write-combine bu↵er (WCB)
in commodity processors [10, 37] to coalesce multiple
stores to the same cache line. We employ a five-entry
log bu↵er (FIFO) in the memory controller to improve
write performance of log updates similar to WCB. The
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Figure 4: Overview of the proposed hardware-driven logging in persistent memory. (a) Architecture
overview. (b) Hardware-driven logging on a write hit in L1 cache. (c) Hardware-driven logging on a
write miss in L1 cache.

nents [20, 29]. On-chip transaction bu↵ers/caches can
be susceptible for overflow issues [20]. Therefore, elimi-
nating them can substantially improve persistent mem-
ory performance and flexibility.

Our logging scheme builds on three design princi-
ples. First, we update the log using the data values
and hardware information that are transferred among
CPU caches during write hit, write-back, and write-
allocate. As such, we significantly reduce the number
of load/store instruction executed in the pipeline and
cache/memory tra�c of loading values from persistent
data. Second, we invoke force-write-backs individual
cache lines only when necessary, avoiding force-write-
backs of cache lines too early (earlier than the corre-
sponding log record is likely to be overwritten soon). By
invoking force-write-backs in hardware, we can address
the persistence risk in multithreading scenario. Third,
our hardware-driven logging scheme allows us to provide
write-order control with transaction commit blocks. As
such, we eliminate the pipeline overhead of executing
the memory barrier instructions. § 3.5 illustrates steps
of transaction execution using our design.

3.1 Architecture Overview
Figure 4(a) depicts an overview of our processor and

memory architecture. We assume that all storage com-
ponents in the processor are volatile. The main mem-
ory consists of DRAM and NVRAM, which are both
deployed on the processor-memory bus.

Failure Model. The data in DRAM or CPU caches is
lost across system reboots, while data in NVRAM re-
mains. Our design focuses on maintaining persistence of
user-defined critical data stored in NVRAM. After fail-
ures, the system can recover critical data structures by
replaying the log in NVRAM. The DRAM can be used
to store data without persistence requirement, such as
stacks and data transfer bu↵ers [10, 20].

Persistent Memory Transactions. Similar to most
prior persistent memory designs [10, 14], we employ
transactions as a software abstraction to enforce per-

sistence of critical data. A transaction is a group of in-
structions that need to appear as an atomic unit (all or
nothing) in the face of system failures. Figure 3(b) illus-
trates a simple example code of one transaction with our
design (detailed software interface design is discussed in
§ 4). The transaction defines object A as a piece of crit-
ical data that needs persistence guarantee. Compared
with traditional logging-based persistent memory trans-
actions (Figure 3(a)), our transactions eliminate log-
ging functions, cache force-write-back instructions, and
memory barrier instructions.

The Log. We employ a fixed size single-consumer/single-
producer Lamport circular bu↵er [36] as the log. It can
be reserved and truncated by persistent memory sys-
tem software. Our hardware mechanisms perform log
appends. We adopt circular bu↵er, because it allows si-
multaneous appends and truncates without locking [36,
10]. Each log record consists of a set of log entries,
each can be a record header (including the transaction
ID and the address of the corresponding persistent data
object) or cache-line-size undo/redo values. We adopt
a single bit to distinguish the record header from the
rest of entries. We also adopt a torn bit per log en-
try to indicate the completion of each log update [10].
The log is shared by all threads of an application to
simplify system recovery. Whereas our logging scheme
maintains log appends by hardware, persistent memory
can expose the log to system software which maintains
log truncation and system recovery.

Uncacheable Log and Log Bu↵er. Log is typically
used during system recovery or transaction abort; it is
less likely reused during application execution. In addi-
tion, it is imperative to commit the data written to the
log to NVRAM in store-order. Therefore, we make the
log uncacheable. This is inline with prior works, which
directly write log updates into write-combine bu↵er (WCB)
in commodity processors [10, 37] to coalesce multiple
stores to the same cache line. We employ a five-entry
log bu↵er (FIFO) in the memory controller to improve
write performance of log updates similar to WCB. The
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How does it work? 
 
 
•  Writes to persistent memory automatically trigger a write to 

the log – a software-allocated circular buffer 
•  Log information includes TxID, address, undo cache line 

value, and redo cache line value 
•  Leveraging cache hit/miss handling process to update the log 
•  Log updates get buffered in the processor  
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write miss in L1 cache.

nents [20, 29]. On-chip transaction bu↵ers/caches can
be susceptible for overflow issues [20]. Therefore, elimi-
nating them can substantially improve persistent mem-
ory performance and flexibility.

Our logging scheme builds on three design princi-
ples. First, we update the log using the data values
and hardware information that are transferred among
CPU caches during write hit, write-back, and write-
allocate. As such, we significantly reduce the number
of load/store instruction executed in the pipeline and
cache/memory tra�c of loading values from persistent
data. Second, we invoke force-write-backs individual
cache lines only when necessary, avoiding force-write-
backs of cache lines too early (earlier than the corre-
sponding log record is likely to be overwritten soon). By
invoking force-write-backs in hardware, we can address
the persistence risk in multithreading scenario. Third,
our hardware-driven logging scheme allows us to provide
write-order control with transaction commit blocks. As
such, we eliminate the pipeline overhead of executing
the memory barrier instructions. § 3.5 illustrates steps
of transaction execution using our design.

3.1 Architecture Overview
Figure 4(a) depicts an overview of our processor and

memory architecture. We assume that all storage com-
ponents in the processor are volatile. The main mem-
ory consists of DRAM and NVRAM, which are both
deployed on the processor-memory bus.

Failure Model. The data in DRAM or CPU caches is
lost across system reboots, while data in NVRAM re-
mains. Our design focuses on maintaining persistence of
user-defined critical data stored in NVRAM. After fail-
ures, the system can recover critical data structures by
replaying the log in NVRAM. The DRAM can be used
to store data without persistence requirement, such as
stacks and data transfer bu↵ers [10, 20].

Persistent Memory Transactions. Similar to most
prior persistent memory designs [10, 14], we employ
transactions as a software abstraction to enforce per-

sistence of critical data. A transaction is a group of in-
structions that need to appear as an atomic unit (all or
nothing) in the face of system failures. Figure 3(b) illus-
trates a simple example code of one transaction with our
design (detailed software interface design is discussed in
§ 4). The transaction defines object A as a piece of crit-
ical data that needs persistence guarantee. Compared
with traditional logging-based persistent memory trans-
actions (Figure 3(a)), our transactions eliminate log-
ging functions, cache force-write-back instructions, and
memory barrier instructions.

The Log. We employ a fixed size single-consumer/single-
producer Lamport circular bu↵er [36] as the log. It can
be reserved and truncated by persistent memory sys-
tem software. Our hardware mechanisms perform log
appends. We adopt circular bu↵er, because it allows si-
multaneous appends and truncates without locking [36,
10]. Each log record consists of a set of log entries,
each can be a record header (including the transaction
ID and the address of the corresponding persistent data
object) or cache-line-size undo/redo values. We adopt
a single bit to distinguish the record header from the
rest of entries. We also adopt a torn bit per log en-
try to indicate the completion of each log update [10].
The log is shared by all threads of an application to
simplify system recovery. Whereas our logging scheme
maintains log appends by hardware, persistent memory
can expose the log to system software which maintains
log truncation and system recovery.

Uncacheable Log and Log Bu↵er. Log is typically
used during system recovery or transaction abort; it is
less likely reused during application execution. In addi-
tion, it is imperative to commit the data written to the
log to NVRAM in store-order. Therefore, we make the
log uncacheable. This is inline with prior works, which
directly write log updates into write-combine bu↵er (WCB)
in commodity processors [10, 37] to coalesce multiple
stores to the same cache line. We employ a five-entry
log bu↵er (FIFO) in the memory controller to improve
write performance of log updates similar to WCB. The
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be susceptible for overflow issues [20]. Therefore, elimi-
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ory performance and flexibility.

Our logging scheme builds on three design princi-
ples. First, we update the log using the data values
and hardware information that are transferred among
CPU caches during write hit, write-back, and write-
allocate. As such, we significantly reduce the number
of load/store instruction executed in the pipeline and
cache/memory tra�c of loading values from persistent
data. Second, we invoke force-write-backs individual
cache lines only when necessary, avoiding force-write-
backs of cache lines too early (earlier than the corre-
sponding log record is likely to be overwritten soon). By
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memory barrier instructions.
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be reserved and truncated by persistent memory sys-
tem software. Our hardware mechanisms perform log
appends. We adopt circular bu↵er, because it allows si-
multaneous appends and truncates without locking [36,
10]. Each log record consists of a set of log entries,
each can be a record header (including the transaction
ID and the address of the corresponding persistent data
object) or cache-line-size undo/redo values. We adopt
a single bit to distinguish the record header from the
rest of entries. We also adopt a torn bit per log en-
try to indicate the completion of each log update [10].
The log is shared by all threads of an application to
simplify system recovery. Whereas our logging scheme
maintains log appends by hardware, persistent memory
can expose the log to system software which maintains
log truncation and system recovery.

Uncacheable Log and Log Bu↵er. Log is typically
used during system recovery or transaction abort; it is
less likely reused during application execution. In addi-
tion, it is imperative to commit the data written to the
log to NVRAM in store-order. Therefore, we make the
log uncacheable. This is inline with prior works, which
directly write log updates into write-combine bu↵er (WCB)
in commodity processors [10, 37] to coalesce multiple
stores to the same cache line. We employ a five-entry
log bu↵er (FIFO) in the memory controller to improve
write performance of log updates similar to WCB. The
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Results 
 •  McSimA+ simulator running  

•  Persistent memory micro-benchmarks 
•  A real workload – a persistent version of memcached 

•  System throughput improved by 1.45x~1.60x on average 
•  Memcached throughput improved by 3.3x 
•  Memory traffic reduced by 2.36x~3.12x 
•  Dynamic memory energy improvement by 1.53x~1.72x 
•  Hardware overhead 

•  17 bytes of flip-flops 
•  1-bit cache tag information per cache line 
•  Multiplexers  
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•  Workload characterization 
•  Exploring persistent memory use 

cases  
•  Identifying system bottlenecks 
•  Implications to software/hardware 

design 
•  System software 

•  Efficient fault tolerance and data 
persistence mechanisms 

•  Hardware 
•  Developing storage accelerators 
•  Redefining the boundary between 

software and hardware 
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