
Energy Efficient Network-on-Chip
with Runtime Optimization Selection 

for MPSoCs

1MPSoC2016

Masaaki Kondo
Graduate School of Information Science and Technology, 

The University of Tokyo



Background

MPSoC2016 2

 NoCs are becoming the communication backbones for 
Manycore Processor SoCs

 Performance and power is affected by the efficiency of NoCs
 Cache and memory access latencies are NoC-dependent

 Up to 30% of processor power can be drawn by NoCs

 Optimization techniques for energy efficient NoCs
 Many optimization techniques have been proposed so far
 Performance optimization techniques comes with power overhead while 

power optimization techniques comes with performance penalties
 How do these optimization techniques affect their energy efficiency?
 How to utilize these optimization techniques to achieve the best energy 

efficiency?



Challenges and Strategies

MPSoC2016 3

 To find best combination of NoC optimization techniques
for executing applications
 Need to select suitable optimization combinations dynamically 

 Huge number of candidates of combinations

 Time overhead for simulation or profiling is not acceptable

 Our strategies
 Runtime framework to adaptively control NoC optimization

 Implement possible optimizations and make their functionality controllable

 Create performance and energy models to estimate the impact of
optimization techniques on them

 Based on the estimated performance and energy, apply the best
mix of optimization techniques



Proposed Runtime Framework

MPSoC2016 4

 Epoch-based control 
 Runtime is divided into shutter periods and execution epochs
 Switches all optimization techniques on in the shutter period to

collect performance stats 
 Using these stats and the performance and energy models,

makes the best throttling decisions of optimization techniques
 Applies them for the succeeding execution epoch

Time

Shutter 
Period

Model‐based 
Opt. Selection

Execution with 
Selected Opt.



The NoC Optimization Techniques

 We focus on three techniques as examples
 Applicable for wide variety of techniques if modeled

 Power Gating (PG)
 Turns each router off if it is idle for a specific time duration
 Saves static power with dynamic power and latency overhead

 Prediction Router (PR)
 Bypasses the router’s datapath if output port of a packet is predicted
 Reduces latency with power overhead of predictors

 Traffic Compression (TR)
 Reduces packet size (or number of flits) if the compression succeeds
 Has positive effect on performance and dynamic power
 Compression circuitry consumes power and takes time

5MPSoC2016



Performance Models at a Glance
 Performance model
 Inputs: num. of hops per flit, the total number of packets, 

and the average number of flits per packet
 The base network latency model:

6MPSoC2016

 Energy model
 Inputs: num. of router and link accesses
 Parameters: static power, clock power, energy per access 

for the links and routers
 The base network energy model:

See the following paper for details:
Y. He, et. al., “Runtime Multi-Optimizations for Energy Efficient On-chip Interconnections”, 
ICCD2015.



Performance Model Validation

 Errors are between +15% and -20%
 Mostly come from the queueing model

 Not perfectly accurate, but enough for optimization selection

7MPSoC2016

 Models are validated against simulations (the baseline)
NO-OP: w/o Opt., PG: Power Gating, PR: Prediction Router (PR), TC: Traffic Compression



Energy Model Validation

 Errors are between +1% and -1.5% 
 Very accurate since the way to model power consumption 

is the same as simulation environment

8MPSoC2016

 Models are validated against simulations (the baseline)
NO-OP: w/o Opt., PG: Power Gating, PR: Prediction Router (PR), TC: Traffic Compression



Evaluation Methodology
 GEMS/Simics with Garnet and Orion 2 for simulating the target 

manycore SoC with NoC
 During simulation, we collected periodic traces of related performance 

stats and then obtain the results using offline analyses
 Shutter period: 10K instructions
 Epoch size: 100K instructions

9MPSoC2016



Performance Result

 Adaptive runtime framework has very good outcome
 Second to oracle, which means almost the best groups of 

optimizations are chosen for each epoch
10MPSoC2016



Energy Efficiency Result

11MPSoC2016

 Again, adaptive runtime framework achieves good result
 Second to oracle, which means almost the best groups of 

optimizations are chosen for each epoch in terms of energy



Summary

 We proposed and evaluated a model-based runtime adaptive 
framework for determining the best group of NoC optimizations

 The framework works well as its resulting network performance 
and energy are only second to oracle

 We can achieve 26% performance improvement and 57% 
energy saving, respectively over “no optimization” case

 Acknowledgement
 Yuan He (The University of Tokyo)
 Takashi Nakada (The University of Tokyo)
 Hiroshi Sasaki (Columbia University)
 Shinobu Miwa (The University of Electro-Communications)
 Hiroshi Nakamura (The University of Tokyo)

12MPSoC2016


