Energy Efficient Network-on-Chip with Runtime Optimization Selection for MPSoCs

Masaaki Kondo

Graduate School of Information Science and Technology, The University of Tokyo

- NoCs are becoming the communication backbones for Manycore Processor SoCs
- Performance and power is affected by the efficiency of NoCs
 - Cache and memory access latencies are NoC-dependent
 - Up to 30% of processor power can be drawn by NoCs
- Optimization techniques for energy efficient NoCs
 - Many optimization techniques have been proposed so far
 - Performance optimization techniques comes with power overhead while power optimization techniques comes with performance penalties
 - How do these optimization techniques affect their energy efficiency?
 - How to utilize these optimization techniques to achieve the best energy efficiency?

Challenges and Strategies

- To find best combination of NoC optimization techniques for executing applications
 - Need to select suitable optimization combinations dynamically
 - Huge number of candidates of combinations
 - Time overhead for simulation or profiling is not acceptable
- Our strategies
 - Runtime framework to adaptively control NoC optimization
 - Implement possible optimizations and make their functionality controllable
 - Create performance and energy models to estimate the impact of optimization techniques on them
 - Based on the estimated performance and energy, apply the best mix of optimization techniques

Proposed Runtime Framework

- Epoch-based control
 - Runtime is divided into shutter periods and execution epochs
 - Switches all optimization techniques on in the shutter period to collect performance stats
 - Using these stats and the performance and energy models, makes the best throttling decisions of optimization techniques
 - Applies them for the succeeding execution epoch

The NoC Optimization Techniques

- We focus on three techniques as examples
 - Applicable for wide variety of techniques if modeled
- Power Gating (PG)
 - Turns each router off if it is idle for a specific time duration
 - Saves static power with dynamic power and latency overhead
- Prediction Router (PR)
 - Bypasses the router's datapath if output port of a packet is predicted
 - Reduces latency with power overhead of predictors
- Traffic Compression (TR)
 - Reduces packet size (or number of flits) if the compression succeeds
 - Has positive effect on performance and dynamic power
 - Compression circuitry consumes power and takes time

Performance Models at a Glance

Performance model

- Inputs: num. of hops per flit, the total number of packets, and the average number of flits per packet
- The base network latency model:

 $\overline{L_{Net}} = 2L_{NI} + L_{Route} \times \overline{H} + L_{Link} \times (\overline{H} + 1) + \overline{L_{Queue}}$

Energy model

- Inputs: num. of router and link accesses
- Parameters: static power, clock power, energy per access for the links and routers
- The base network energy model:

$$\overline{E_{Net}} = E_{D_{Router}} \times \overline{H} + E_{D_{Link}} \times (\overline{H} + 1) + \frac{P_{D_{Clk}} \times T(\overline{L_{Net}})}{N_{Flit}} + \frac{P_{S_{Net}} \times T(\overline{L_{Net}})}{N_{Flit}}$$

See the following paper for details:

Y. He, et. al., "Runtime Multi-Optimizations for Energy Efficient On-chip Interconnections", ICCD2015.

Performance Model Validation

Models are validated against simulations (the baseline)

NO-OP: w/o Opt., PG: Power Gating, PR: Prediction Router (PR), TC: Traffic Compression

- Errors are between +15% and -20%
 - Mostly come from the queueing model
- Not perfectly accurate, but enough for optimization selection

Energy Model Validation

Models are validated against simulations (the baseline)

NO-OP: w/o Opt., PG: Power Gating, PR: Prediction Router (PR), TC: Traffic Compression

- Errors are between +1% and -1.5%
- Very accurate since the way to model power consumption is the same as simulation environment

Evaluation Methodology

- GEMS/Simics with Garnet and Orion 2 for simulating the target manycore SoC with NoC
 - During simulation, we collected periodic traces of related performance stats and then obtain the results using offline analyses
- Shutter period: 10K instructions
- Epoch size: 100K instructions

			Simulation Parameter	Value
Memory		norv	Number of cores	16
		nory	Topology	4×4 mesh
	**************************************		Processor	4 GHz, In-order
Routterink		Core/11\$	L1 I/D cache	32 KB per Processor, 4-way set
		NI Link		associative
	\land		L2 cache	256 KB per Bank, 16-way set as-
	\backslash	L2\$/Directory Router		sociative
			Cache line	64 Bytes
			Main memory	4 GB
		Mem. Controller (only at corner tiles)	Main memory latency	160 cycles
			Coherence protocol	MOESI, Directory
			Link	128-bit, 1 cycle traversal
			Packet	128-bit control, 640-bit data
	` ا		Router	1 GHz, Virtual channel router
Memory	norv	Virtual channel	2 per Virtual network	
Mentory			Virtual network	3 per Physical link
			Routing algorithm	X-Y routing

Performance Result

NO-OP
PG
PR
PTC
PG&PR
PG&PR
PG&TC
PR&TC
PG&PR&TC
Adaptive
Oracle

- Adaptive runtime framework has very good outcome
 - Second to oracle, which means almost the best groups of optimizations are chosen for each epoch

Energy Efficiency Result

NO-OP 🔳 PG 🔳 PR 🔳 TC 📕 PG&PR 🔳 PG&TC 🔳 PR&TC 🔳 PG&PR&TC 🖾 Adaptive 🗔 Oracle

- Again, adaptive runtime framework achieves good result
 - Second to oracle, which means almost the best groups of optimizations are chosen for each epoch in terms of energy

Summary

- We proposed and evaluated a model-based runtime adaptive framework for determining the best group of NoC optimizations
- The framework works well as its resulting network performance and energy are only second to oracle
- We can achieve 26% performance improvement and 57% energy saving, respectively over "no optimization" case
- Acknowledgement
 - Yuan He (The University of Tokyo)
 - Takashi Nakada (The University of Tokyo)
 - Hiroshi Sasaki (Columbia University)
 - Shinobu Miwa (The University of Electro-Communications)
 - Hiroshi Nakamura (The University of Tokyo)