
© 2016 Synopsys, Inc. 1

Pierre Paulin
Director of R&D

July 2016

Effective Programming Models for

Embedded Vision Processing

© 2016 Synopsys, Inc. 2

Outline

•EV6 Embedded Vision Processor Overview

•EV Programming Tools

–OpenVX runtime

–OpenCL C with auto-vectorization

–CNN programming tools

© 2016 Synopsys, Inc. 3

EV6x Scalable Embedded Vision Processors

• Highly integrated and configurable

– Configurable scalar, vector DSP and

convolutional neural network (CNN)

architecture

– Supports 1080p - 4K vision streams

• User scalable for optimum performance

– 1 to 4 Vision CPU cores

– Programmable CNN engine

• State-of-the-art performance-efficiency

• High productivity toolset

– OpenCV, OpenVX, OpenCL C

OpenCV, OpenVX™

libraries and API
MetaWare, OpenCL C

Development Tools

Vision CPU (1 to 4 cores)

AXI Interconnect

Core 4

Core 3

CNN Engine

Core 2

Core 1

32-bit

scalar

512-bit

vector DSP

Embedded Vision Processor

Convolution

Classification

32-bit

scalar

512-bit

vector DSP

Shared MemorySync & Debug Streaming Transfer Unit

© 2016 Synopsys, Inc. 4

EV Processor Programming Tools

Scalar

Vector

CNN

Standard Programming models

Accelerator

OpenCL C

Integrated Solution

C/C++

Embedded

Vision

Libraries
CNN

graph

• Embedded vision algorithms

– Very dynamic space

– High levels of innovation

– High differentiation

• High-productivity tools provide

strong competitive advantage

• Leverage standards for better

portability

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiOma_39aTJAhWLOz4KHW9QACUQjRwIBw&url=http://www.scsk12.org/schools/mcsprepnw.aca/site/calendar.shtml&psig=AFQjCNEd3qQbBSnwLRd0j3RYH55Fruz65A&ust=1448312277290004
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwilgOiK-KTJAhUIyj4KHfTHDzMQjRwIBw&url=http://expertintegratedsystemsblog.com/2012/04/the-competitive-advantages-of-troy-ngp-in-the-world-of-integrated-systems-part-1-of-3-integration-by-design/&psig=AFQjCNF7AVvw7lEtP_Pj_tfD6CvILNSauQ&ust=1448312688166634

© 2016 Synopsys, Inc. 5

High Productivity Tools Increase Flexibility

• OpenVX eases vision graph

development

• OpenCV open source library of

2500 vision algorithms helps

build vision applications

• MetaWare C/C++ compiler

delivers optimize program

coding

• OpenCL C instructions with

whole function vectorization

simplifies DSP programming

• CNN graph mapping tools

automate CNN programming

K1 Kn
…

Kernel Lib

Ui

Uj

Uk

Kn

Cm

1

Uk

Um

Runtime

Cm

2

Cm

3

Cm

3

User kernels

Ui

Uk

C/C++

OpenCL C

Cm

i

CNN

Primitives

CNN Graph

Mapping Tools

CNN Graph

Training

C/C++ compiler with

OpenCL C whole function

vectorization
Lib

Embedded Vision Processor

Vision Graph

Synopsys User Open Source Third Party Partner

© 2016 Synopsys, Inc. 7

CPU Cluster CNN2 Engine

Option

Convolution

ALU Conv. 2D

AGUs CC MEMs

Cluster

Comm. Shared Mem.DMA

Classification

ARC HS VDSP 4

ARC HS VDSP 3

SIMD core

32 bit

RISC
SIMD (512b)

ARC HS VDSP 2

ARC HS VDSP 1

SIMD core

32 bit

RISC
SIMD (512b)

VCCMDI VCCMDI

ALU Conv. 1D

AGUs CC MEMs

Coherency

ARConnect Sync Debug Power Mgmt.

Graph Mapping in EV Processor

Embedded Vision Programming Tools

Ui

Uj

Uk

Kn

Cm

1

Uk

Um

graph
Cm

2

Cm

3

Cm

3

• Runtime performs OpenVX node

to processor core assignment and

load balancing

– Option for

user-guided assignment

– Frame or tile-based

• Automatic insertion of

communication buffers and

memory allocation

– Option for user-guided memory

allocation

– Extensible to

customer H/W

accelerators

© 2016 Synopsys, Inc. 8

Tiling in EV Processor

• Logical Model

– Data flow between Kernels

Reducing memory size and power

• Classical OpenCL Kernel Implementation

– Host-Device frame buffer movement

– Efficiency/memory size/power issues!

• EV Proc. tiled implementation

– Data “tunneled” through small(er) local

vector memory

– Enhanced OpenVX/OpenCL runtime

– Runtime calls kernels directly

– No round-trip to host

Frame

1

K2

External DRAM

DMA

EV Processor Local Memory

Tile Tile

K1

Tile

Frame

3

DMA

K1

Frame

1

K2

Frame

2

Frame

3

External DRAM

K1 K2

OpenCL™ C Whole Function Vectorization
OpenCL 2.0, embedded profile

• Lanes execute the same program on different data

– Every lane works on a different pixel, image patch, decision tree,….

• Every lane can do independent load/stores to the shared Vector

DCCM with the X-bar (Scatter-Gather)

• Lane-dependent control-flow is mapped to predicated execution

ARC HS VDSP

32 bit

RISC

D$ / I$

SIMD (512b)

Vector DCCM

SIMD FPU

X-bar

OpenCL C

__kernel find_object(…) {
…
if (pixel[i,j] < 128){
…
}

}

The compiler maps OpenCL C kernel on all the SIMD lanes

Scalar, OpenCL C, and Manual Vector code: an Example

for (short i = get_local_id(); i < currentcount; i+=16) {
for (short j = 0; j < prevcount; j++) {

uchar dist = 0;
for (short k = 0; k < 8; k++) {

dist += popcount(current[i][k] ^ prev[j][k]);
}
if (dist < min_dist) {

best_match2 = best_match;
min_dist2 = min_dist;
best_match = j;
min_dist = dist;

} else if (dist < min_dist2) {
best_match2 = j;
min_dist2 = dist;

}
}
best[i] = best_match;
secondbest[i] = best_match2;

}

short32 id_32 = (short32)(0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31);

for (ushort i = 0; i < currentcount; i+=32) {
short32 offsets = (i + id_32) * 16;
ushort32 vcurrent[16];
ushort32 mask = offsets < currentcount;
for (ushort k = 0; k < 16; k++) {

vcurrent[k] = vgather32(mask, current, offsets++);
}
for (ushort j = 0; j < prevcount; j++) {

ushort32 dist = 0;
for (ushort k = 0; k < 16; k++) {

dist += popcount(vcurrent[k] ^ prev[j][k]);
}
short32 found_best_match = dist < min_dist;
short32 found_best_match2 = dist < min_dist2;
found_best_match2 &= !found_best_match;
best_match2 =

found_best_match? best_match :
found_best_match2? j : best_match2;

min_dist2 =
found_best_match? min_dist :
found_best_match2? dist : min_dist2;

best_match = found_best_match? j : best_match;
min_dist = found_best_match? dist : min_dist;

}
vstore32(mask, best_match, 0, &best[i]);
vstore32(mask, best_match2, 0, &secondbest[i]);

}
}

Scalar C code OpenCL C Manually Vectorized Code
for (short i = 0; i < currentcount; i++)
{

for (short j = 0; j < prevcount; j++) {
uchar dist = 0;
for (short k = 0; k < 8; k++) {

dist += popcount(current[i][k] ^ prev[j][k]);
}
if (dist < min_dist) {

best_match2 = best_match;
min_dist2 = min_dist;
best_match = j;
min_dist = dist;

} else if (dist < min_dist2) {
best_match2 = j;
min_dist2 = dist;

}
}
best[i] = best_match;
secondbest[i] = best_match2;

}

Vectorize one loop

by changing indexing

• Change datatypes to vector types for some variables

• Use intrinsics for load/stores

• Manually convert simple control flow into vector expressions

• Explicitly deal with vectorized loop boundaries

Value = high productivity for high performance code.

– Software developer to write algorithms in Scalar C code

– Standard OpenCL syntax can be used to guide the compiler in vectorizing any loop

1 line

change to

vectorize

loop.

© 2016 Synopsys, Inc. 14

CNN Programming Tools

Tiling and Mapping Analysis

C Code Generation

C Compilation and

Library Generation

CNN

Frameworks

Graph Import,

Float  int12 conversion Fixed point C code

Implementation C code

(for virtual platforms)
CNN2 Target

C code

CNN2 target binary

Floating point C code

Graph IR

CNN Functional

Implementation
(golden reference)

CNN

weights

CNN Functional

Model

CNN

graph

Uj

Uk

Kn

Uk

Um

graph

© 2016 Synopsys, Inc. 15

Conclusions

• High productivity is essential in dynamic vision market

• OpenVX becoming de facto standard for high-level vision applications

–Leveraged in EV Programming Tools for automation of load balancing,

data communication and synchronization

• OpenCL C

–Offers right semantics for effective use of data level parallelism

–Enables powerful whole function auto-vectorization

• CNN Programming

–Optimized code generation on CNN engine from high-level CNN graph description

Thank You

