

Bringing Dynamic Control to Real-time NoCs

Rolf Ernst TU Braunschweig Nara, July 12, 2016

Outline

Motivation

- NoCs for hard real-time and robustness
- Dynamic resource management
- Improving memory control and error handling
- Conclusions

Motivation

- many-core systems are reaching critical embedded systems
 - sensor fusion and recognition in highly automated driving
 - avionics, space
- Iimited power and cost budget
 - compact solutions
 - higher systems integration
- mixed criticality

Mixed criticality challenge - Independence

- safety standards require
 - isolation of subsystems with different criticality levels (IEC 61508: sufficient independence)
 - predictable timing where timing is relevant (almost every system)
 - robustness against errors
- already challenging in current multicore implementations
 - how to meet these challenges in many-cores?
 - main difference: Communication via Network-on-Chip (NoC)

Robustness and isolation in NoCs

- the NoC must be designed according to the network traffic with highest criticality
- network interface must separate critical network from non critical tiles
- non-critical tasks cannot be trusted
 - WCET
 - activation frequency
 - communication volume
 - addressing
- approach
 - NoC with QoS guarantees for critical traffic
 - Network Interface (NI) with access control
- Iast talk at MpSoC (2011)
 - used in several projects (ARAMIS, RECOMP, ...)

Outline

Motivation

NoCs for hard real-time and robustness

- Dynamic resource management
- Improving memory control and error handling
- Conclusions

This talk: NoCs for hard real-time and robustness

main factors

- router and network control
- robustness against errors

main challenge

- high performance requirements + resilience + safety (+ security)
 - cp. autonomous driving!

related work

- limited interference using distributed resource assignment (PhaseNOC) or distributed flow control (back suction)
- predictability using time triggered communication (e.g. Aetheral, CompSOC)
- predictability using static block transfers separating communication from computation
- selected approach: block transfer

"Classical" model in safety critical design

- read in the beginning write in the end
 - examples: task model in automotive software, superblock model (containers)
- in multi-cores
 - clustering of memory accesses
 - deterministic access sequence (DMA)

Static repetition in multicore – CERTAINTY project

AER communication model

Flexible NoC block transfers - Principle

- classical model limited by local memory size and communication cost
 - flexible block transfers as simple extension
- dynamic communication resource reservation
 - Improved utilization of resources in particular memories
 - combine with memory controller for efficient block transfer
- challenge: optimized worst-case (WC) timing for safety critical systems
 - allow other patterns for best effort traffic mixed critical systems

Block transfer – Worst case (WC) timing

- previous NoC solution
 - distributed scheduling and arbitration in routers
 - result: wide timing bounds for block (and other) transfers

VC reservation – Predictable timing

- resource reservation timing
 - tightly bounded WC memory access and transfer time
 - result of deterministic sequence + resource reservation
 - computing time measured or analyzed (e.g. WCET analysis)

Outline

- Motivation
- NoCs for hard real-time and robustness
- Dynamic resource management
- Improving memory control and error handling
- Conclusions

Integrated Dependable Architecture for Many Cores (IDAMC) - Research vehicle

configurable NoC

- up to 4 links per router
- 4-64 nodes with up to 4 AMBA based tiles
 - currently LEON3
- NoC level virtualization
- includes DMA controlled data transport
- implemented on FPGAs
 - Synopsys HAPS-62

IDAMC NoC overview

wormhole routing

flit size 128b

virtual channels (VC)

- 2-8 channels
- classes: bandwidth critical (BC), best effort (BE)

router (R)

- 2 stage arbitration (input buffer + output iSLIP)
- distributed control (back suction streaming option; not this talk)

network interface (NI)

- address translation w. protection
- signaling for different DMA communication paradigms
- tile level traffic shaping

Extension for dynamic channel reservation

- include Resource Manager (RM)
 - controls VC assignment and tile level traffic shaping
 - adapt routers

Overlay network

- overlay network to decouple data flow and control protocol
- data layer data transport and data routing and arbitration
- control layer global and dynamic arbitration
 - clients admission control locally in nodes
 - **RM** central scheduling unit
 - protocol based synchronization

Network virtual channels

WC timing analysis for all levels and mechanisms developed

control layer VC: CL

- single flit message size
- min.distance shaping small buffer
- Iatency critical VC: LC
 - optional VC for cache traffic
 - max 32/64 bytes payload (256 bit)
 - programmable min. distance shaping
- reserved critical VC: RC
 - VC reserved for single traffic/link
 - reservation controlled by RM (no local arb.)
- best effort VC: BE
 - VC reserved for single traffic/link
 - reservation controlled by RM (no local arb.)
 - RM controlled preemption for RC traffic

Router architecture

- input buffering + wormhole switching
 - small buffers
- crossbar switch
- priority-based arbitration
 - highest priority packet is transmitted first
 - round-robin between packets in the same priority
- FIFO inside VCs

WC timing analysis for all levels and mechanisms developed

Resource reservation protocol

Experiments

• analytical WC experiments

pyCPA analysis framework

simulations

- OMNeT++ event-based simulation framework
- HNOCS library

input data

memory access traces

Experiments

comparison with

- TDM with short slots (cp. Aetheral) slot size adjusted to the network latency of a single packet
- TDM with long slots slot size sufficient for complete block transmission (64B/slot – 4 packets; 8KB/slot – 125 packets)

MPEG-4 Use-case

MPEG function 40 MED 40 CPU 60 190 600 250 0.5 DRAM SRAM1 SRAM2 IDCT 0.5 910 🛧 32 670 **50**0 500 ADSF UP RISC BAB SMAP

function mapping

average bandwidth demands in MB/s

MPEG-4 worst case block transfer timing

RM for BE traffic

CL

 $\mathbf{R}\mathbf{0}$

BE

- average total latency for CHSTONE benchmark
- 64B block size
- uses BE channel

Outline

- Motivation
- NoCs for hard real-time and robustness
- Dynamic resource management
- Improving memory control and error handling
- Conclusions

Resource Manager and SDRAM scheduling

- due to the preservation of spatial locality, a simple SDRAM controller that serves requests in FCFS order suffices
 - SDRAM scheduling is implicitly delegated to RM
 - hence, mixed criticality can be addressed at the RM level

RM vs. predictable SDRAM scheduling

predictable SDRAM schedulers

- where spatial locality of transfers is not enforced (e.g. TDM with small slots), predictable SDRAM controllers are required
- to deal with lack of locality, such controllers employ *close-page* policy and/or bank interleaving - Dedicated Close Page-Controllers (DCPC).
- the operation DCPCs is controlled by two parameters: BI and BC
 - BI (Bank Interleaving) no of banks per access
 - BC (Burst Count) no of *read* or *write commands executed per bank*

RM + standard SDRAM controller

- keeps spatial locality
- allows reduction of row buffer open and close operations
- out-of-order optimization must be turned off (FCFS memory scheduling)
- choose $BI = 1 \rightarrow$ leads to predictable access timing

Resource Managers and SDRAM scheduling

Resource Managers and SDRAM scheduling

Handling packet losses in block transfers

- transient error or packet drop (BE)
- DMA ARQ variant of Go-back-N and Selective Repeat
 - data retransmitted from memory
 - acknowledge entire DMA transfers (send window $n = n_{dma}$)
 - selective retransmission
- Iow overhead end-to-end protection
 - WC timing analysis for error free and 6000 error cases available
- very efficient error protection

DMA transfer time (8KByte, error free)

Outline

- Motivation
- NoCs for hard real-time and robustness
- Dynamic resource management
- Improving memory control and error handling
- Conclusions

Conclusion

- NoC based many-cores are entering safety critical system design
- mixed criticality is result of function integration
- dynamic resource management using a research manager is a highly efficient NoC control mechanism for such NoCs providing worst case guarantees
- mechanism supports simpler memory control and transient error handling

Thank you!

Acknowledgement: Some of the slide contents have been provided by Leonardo Ecco, Adam Kostrzewa, and Eberle Rambo

Bibliography

- A. Kostrzewa, S. Saidi, and R. Ernst, "Dynamic control for mixed-critical networks-on-chip," in RTSS, 2015.
- A. Kostrzewa, S. Saidi, L. Ecco, and R. Ernst, "Dynamic admission control for real-time networks-on-chips," ASP-DAC 2016.
- Rambo, Eberle A., and Rolf Ernst. "Worst-case communication time analysis of networks-onchip with shared virtual channels." 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2015.
- Rambo, Eberle A., Selma Saidi, and Rolf Ernst. "Providing formal latency guarantees for ARQbased protocols in Networks-on-Chip." 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2016.

