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Motivation
 many-core systems are reaching critical embedded systems
 sensor fusion and recognition in 

highly automated driving 

 avionics, space  

 limited power and cost budget 
 compact solutions 

 higher systems integration 

 mixed criticality
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Mixed criticality challenge - Independence
 safety standards require
 isolation of subsystems with different criticality levels

(IEC 61508: sufficient independence)

 predictable timing where timing is relevant (almost every system)

 robustness against errors

 already challenging in current multicore implementations
 how to meet these challenges in many-cores?

 main difference: Communication via Network-on-Chip (NoC)
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 the NoC must be designed according to the
network traffic with highest criticality

 network interface must separate critical network
from non critical tiles

 non-critical tasks cannot be trusted
 WCET

 activation frequency

 communication volume

 addressing

 approach
 NoC with QoS guarantees for critical traffic

 Network Interface (NI) with access control

 last talk at MpSoC (2011)
 used in several projects (ARAMIS, RECOMP, ...)

Robustness and isolation in NoCs
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 main factors
 router and network control

 robustness against errors

 main challenge
 high performance requirements + resilience + safety (+ security)  

– cp. autonomous driving!

 related work
 limited interference using distributed resource assignment (PhaseNOC) or distributed

flow control (back suction)   

 predictability using time triggered communication (e.g. Aetheral, CompSOC)

 predictability using static block transfers – separating communication from computation

 selected approach: block transfer

This talk: NoCs for hard real-time and robustness
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 read in the beginning - write in the end
 examples: task model in automotive software, superblock model (containers)

 in multi-cores
 clustering of memory accesses

 deterministic access sequence (DMA)

„Classical“ model in safety critical design 
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Static repetition in multicore – CERTAINTY project

read
block

write
block
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Flexible NoC block transfers - Principle

 classical model limited by local memory size and communication cost
 flexible block transfers as simple extension 

 dynamic communication resource reservation 
 Improved utilization of resources - in particular memories

 combine with memory controller for efficient block transfer 

 challenge: optimized worst-case (WC) timing for safety critical systems
 allow other patterns for best effort traffic – mixed critical systems
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Block transfer – Worst case (WC) timing

 previous NoC solution
 distributed scheduling and arbitration in routers

 result: wide timing bounds for block (and other) transfers 
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VC reservation – Predictable timing

 resource reservation timing
 tightly bounded WC memory access and transfer time
 result of deterministic sequence + resource reservation

 computing time measured or analyzed (e.g. WCET analysis) 
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Integrated Dependable Architecture for Many 
Cores (IDAMC) - Research vehicle
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 configurable NoC
 up to 4 links per router

 4-64 nodes with up to 4 AMBA based tiles

 currently LEON3

 NoC level virtualization

 includes DMA controlled data transport

 implemented on FPGAs
 Synopsys HAPS-62
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system
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 wormhole routing
 flit size 128b

 virtual channels (VC)
 2-8 channels

 classes: bandwidth critical (BC), best effort (BE) 

 router (R)
 2 stage arbitration (input buffer + output iSLIP)

 distributed control (back suction streaming option; not this talk)

 network interface (NI)
 address translation w. protection

 signaling for different DMA communication paradigms

 tile level traffic shaping



IDAMC NoC overview
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 include Resource Manager (RM)
 controls VC assignment and tile level traffic shaping
 adapt routers

Extension for dynamic channel reservation

RM

NININI

shaping
parameter

for LC

channel
assignment

MI

NINIR

(virtual)
control layer

channel
request

data layer

RM: resource manager
NI: network interface
R: router
MI: memory interface
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 overlay network to decouple data flow and control protocol
 data layer – data transport and data routing and arbitration 
 control layer – global and dynamic arbitration
 clients - admission control locally in nodes

 RM – central scheduling unit

 protocol based synchronization

Overlay network

N1 N2N0

N4 N5N3

N7 N8N6

DRAMRM
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 control layer VC: CL
 single flit message size

 min.distance shaping – small buffer

 latency critical VC: LC
 optional VC for cache traffic

 max 32/64 bytes payload (256 bit)

 programmable min. distance shaping

 reserved critical VC: RC 
 VC reserved for single traffic/link

 reservation controlled by RM (no local arb.)

 best effort VC: BE
 VC reserved for single traffic/link

 reservation controlled by RM (no local arb.)

 RM controlled preemption for RC traffic

Network virtual channels

VC 
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routing: 
sep. buffers
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levels and mechanisms
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Router architecture 
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 input buffering + wormhole switching
 small buffers

 crossbar switch
 priority-based arbitration
 highest priority packet is transmitted first

 round-robin between packets in the same priority

 FIFO inside VCs
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Resource reservation protocol
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Experiments
 analytical WC experiments 
 pyCPA analysis framework

 simulations
 OMNeT++ event-based simulation framework

 HNOCS library

 input data
 memory access traces 

block transfer

 different block transfer sizes

 CHSTONE : 64B/slot (4 packets)

 MPEG : 8KB/slot (125 packets)
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Experiments
 comparison with
 TDM with short slots (cp. Aetheral) – slot size adjusted to the network latency of a 

single packet 

 TDM with long slots – slot size sufficient for complete block transmission 
(64B/slot – 4 packets; 8KB/slot – 125 packets)

TDM-short slots TDM-long slots 
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 average bandwidth demands in MB/s

MPEG-4 Use-case
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 worst case latency per block transfer
 8KB block transfer
 uses RC channel

MPEG-4 worst case block transfer timing
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RM for BE traffic

 average total latency for CHSTONE benchmark
 64B block size
 uses BE channel
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 due to the preservation of spatial locality, a simple SDRAM controller that serves 
requests in FCFS order suffices

 SDRAM scheduling is implicitly delegated to RM

 hence, mixed criticality can be addressed at the RM level

Resource Manager and SDRAM scheduling
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 predictable SDRAM schedulers
 where spatial locality of transfers is not enforced (e.g. TDM with small slots), 

predictable SDRAM controllers are required

 to deal with lack of locality, such controllers employ close-page policy and/or 
bank interleaving - Dedicated Close Page-Controllers (DCPC).
 the operation DCPCs is controlled by two parameters: BI and BC

 BI (Bank Interleaving) no of banks per access

 BC (Burst Count) no of read or write commands executed per bank

 RM + standard SDRAM controller
 keeps spatial locality

 allows reduction of row buffer open and close operations

 out-of-order optimization must be turned off (FCFS memory scheduling)

 choose BI = 1  leads to predictable access timing

RM vs. predictable SDRAM scheduling
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Resource Managers and SDRAM scheduling

Worst-case latency for a 4x64B request on DDR3 
devices (with 8-bit wide interfaces)

DDR3-1066G: DPCP (BI=4, BC=2): 66.7 nJ/request
Std Ctrl.+RM: 41.4 nJ/request
DRAMPower tool: http://www.es.ele.tue.nl/drampower/
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Resource Managers and SDRAM scheduling

Worst-case latency for a 4x64B request on DDR3 
devices (with 32-bit wide interfaces)
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Handling packet losses in block transfers

DMA transfer time (8KByte, error free)

processes from MPEG4 example

 transient error or packet drop (BE)
 DMA ARQ - variant of Go-back-N 

and Selective Repeat
 data retransmitted from memory

 acknowledge entire DMA transfers (send 
window = )

 selective retransmission

 low overhead end-to-end protection
 WC timing analysis for error free and 

error cases available

 very efficient 
error protection
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 NoC based many-cores are entering safety critical system design

mixed criticality is result of function integration

 dynamic resource management using a research manager is a 
highly efficient NoC control mechanism for such NoCs providing
worst case guarantees

mechanism supports simpler memory control and transient error
handling

Conclusion

Thank you!
Acknowledgement: Some of the slide contents have been provided by 
Leonardo Ecco, Adam Kostrzewa, and Eberle Rambo
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