
Software 
optimization for 
the multi-core
architecture
with State of the 
art Design Flow

July 11th 2016

RICOH COMPANY, LTD.
Institute of ICT

Sadahiro Kimura

1



Agenda
 Motivation
 Traditional Design Flow Issue
 Our Vision
 Outline
 State-of-the-art Design Flow
 Case Study - First Target
 Analyze and Profile
 Parallelize
 Architecture Mapping
 Result
 Conclusion
 Next Step

2



Motivation
 Keywords of the issues

Commoditization of hardware platform
It is most important to make an excellent feature of the product

Difficult software development of the multi-core platform
Optimization and debugging is very difficult

The time shortening of the development
Time to Market is very important

Quality of the development
We have limitations of manual partitioning and mapping

 We need to make the new design flow to solve them !

 We need to catch up state-of-the-art design flow !
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Traditional Design Flow Issues
 Algorithm Development issues

Algorithm design is separated from the system design
Algorithm engineers do not consider system implementation

 Implementation and Optimization issues 
Manual porting of algorithms to target operating system
Manual partitioning and mapping
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Our Vision
 Our Vision

To make the seamless design flow from Algorithm design to system 
implementation for multi-core architecture

 Our Scope
Our scope is the entire hardware and software  
Now Iʼm trying to make software partitioning design flow for multi-core
It is important to divide the whole of software for multi-core
It should be including Operating System portion – This is the next step !
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Outline
 We tried to optimize the only software part at the first step
 We tried to evaluate SILEXICA to optimize software part
 We tried to use the JPEG Encoder as the first case study
 We tried to divide JPEG Encoder into some processes
 We got a result that was not expected
 We were inspired by this result
 And, we are considering the next step
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State-of-the-Art Design Flow
 SILEXICA Design Flow
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Todayʼs presentation



State-of-the-Art Design Flow
 CPN
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Case Study
 Generic JPEG Encoder algorithm
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Case Study
 JPEG Encoder condition

 Input picture condition
500pixel x 375pixcel
RGB format image data

 SILEXICA version
SLX Tool Suite 2016.1
64bit Linux CentOS7
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Condition Value
Number of line at C source code 1121 lines

(without comment line)
Number of File 6 files (including header file)
Size of the executable file 
(Binary size)

494.5K Bytes
(Result of SLX compiler)

500 pixel

375 pixel



Analyze and Profile
 Call Graph of JPEG Encoder
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We found some hot spot of
JPEG Encoder Algorithm.

We have focused here
as the first step

Hot spot



Parallelize
 First Trial – CPN code
 Divide JPEG Encoder into 2 processes
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Parallelize
 First Trial – Execution time

Estimate execution time by ARM CA9 architecture model
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Architecture Mapping
 Mapping to Pandaboard
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Architecture Mapping
 Mapping condition

Condition A - typical
Mapping the two processes into one CPU

Condition B
Mapping the two processes into two CPU
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Result
 First condition
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Condition A

Condition B

20% performance improvement

Performance improvement by parallelization was 20%



Parallelize
 Second Trial – CPN

Divide JPEG Encoder into 5 processes
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Focus to BLK8x8 function



Parallelize
 Second Trial - Execution time

Estimate execution time by ARM CA9 architecture model

18



Architecture Mapping
 Mapping condition

Condition C – Mapping to Pandaboard
Mapping the two processes 

into two CPU by SLX automatically

Condition D – Mapping to 16 core ARM architecture
Mapping each processes into a CPU by manual 
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Result
 Second Trial
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Condition C Condition D

There is no effect of parallelization

Almost same



Parallelize
 Third Trial – CPN

Divide JPEG Encoder into 14 processes
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Focus to Quantization function



Parallelize
 Third Trial - Execution time

Estimate execution time by ARM CA9 architecture model

22



Architecture Mapping
 Mapping condition

Condition E – Mapping to 16 core ARM architecture
Mapping each processes into a CPU by SLX automatically
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Result
 Comparison in all conditions
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Conclusion
 We tried to optimize the JPEG Encoder at the first step

We use SILEXICA tool
To make the CPN is little difficult
SILEXICA is still semi-automatic flow
Need the automatic generation of the CPN

 We need some division strategy for optimization
There is a trade-off of division and communication between processes
We need the early architecture analysis with using virtual platform
We can get the image of strategy for optimization

 We can feel the limitation of commoditization
Hardware platform also important
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Next Step
 Tool-based Architecture Analysis and Optimization

Fusion of tools – SILEXCIA and Virtual platform technology
Analysis architecture for performance by HW and SW co-design
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Thank You !
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