
Software
optimization for
the multi-core
architecture
with State of the
art Design Flow

July 11th 2016

RICOH COMPANY, LTD.
Institute of ICT

Sadahiro Kimura

1

Agenda
 Motivation
 Traditional Design Flow Issue
 Our Vision
 Outline
 State-of-the-art Design Flow
 Case Study - First Target
 Analyze and Profile
 Parallelize
 Architecture Mapping
 Result
 Conclusion
 Next Step

2

Motivation
 Keywords of the issues

Commoditization of hardware platform
It is most important to make an excellent feature of the product

Difficult software development of the multi-core platform
Optimization and debugging is very difficult

The time shortening of the development
Time to Market is very important

Quality of the development
We have limitations of manual partitioning and mapping

 We need to make the new design flow to solve them !

 We need to catch up state-of-the-art design flow !

3

Traditional Design Flow Issues
 Algorithm Development issues

Algorithm design is separated from the system design
Algorithm engineers do not consider system implementation

 Implementation and Optimization issues
Manual porting of algorithms to target operating system
Manual partitioning and mapping

4

Linux /
Windows

Algorithm

Embedded OS

x86 CPU Embedded CPU

Algorithm
(modified)

Embedded
OS

Hardware
Accelerator

Algorithm
kernel

Embedded
CPU

Embedded
CPU

Algorithm
kernel

Algorithm
kernel

Algorithm
Development Stage

Software Porting Stage System Optimization Stage

Library Library Library

Embedded
OS

Manual
porting

Manual partitioning
and mapping

Our Vision
 Our Vision

To make the seamless design flow from Algorithm design to system
implementation for multi-core architecture

 Our Scope
Our scope is the entire hardware and software
Now Iʼm trying to make software partitioning design flow for multi-core
It is important to divide the whole of software for multi-core
It should be including Operating System portion – This is the next step !

5

Embedded OS

Embedded CPU

Algorithm
(modified)

Library

Target
Software

Embedded OS

Embedded CPU

Algorithm
(modified)

Library Final
Partitioning

Scope

Outline
 We tried to optimize the only software part at the first step
 We tried to evaluate SILEXICA to optimize software part
 We tried to use the JPEG Encoder as the first case study
 We tried to divide JPEG Encoder into some processes
 We got a result that was not expected
 We were inspired by this result
 And, we are considering the next step

6

Embedded OS

Embedded CPU

Algorithm
(modified)

Library

Target
Software

Embedded OS

Embedded CPU

Algorithm
(modified)

Library

Todayʼs
Partitioning

Scope

State-of-the-Art Design Flow
 SILEXICA Design Flow

7

Todayʼs presentation

State-of-the-Art Design Flow
 CPN

8

Case Study
 Generic JPEG Encoder algorithm

9

RGB
Data

RGB
To

YCbCr

Down
Sampling DCT

Quantization

Entropy
Encoder

Huffman coding

JPEG
Data

Case Study
 JPEG Encoder condition

 Input picture condition
500pixel x 375pixcel
RGB format image data

 SILEXICA version
SLX Tool Suite 2016.1
64bit Linux CentOS7

10

Condition Value
Number of line at C source code 1121 lines

(without comment line)
Number of File 6 files (including header file)
Size of the executable file
(Binary size)

494.5K Bytes
(Result of SLX compiler)

500 pixel

375 pixel

Analyze and Profile
 Call Graph of JPEG Encoder

11

We found some hot spot of
JPEG Encoder Algorithm.

We have focused here
as the first step

Hot spot

Parallelize
 First Trial – CPN code
 Divide JPEG Encoder into 2 processes

12

Parallelize
 First Trial – Execution time

Estimate execution time by ARM CA9 architecture model

13

Architecture Mapping
 Mapping to Pandaboard

14

Architecture Mapping
 Mapping condition

Condition A - typical
Mapping the two processes into one CPU

Condition B
Mapping the two processes into two CPU

15

Result
 First condition

16

Condition A

Condition B

20% performance improvement

Performance improvement by parallelization was 20%

Parallelize
 Second Trial – CPN

Divide JPEG Encoder into 5 processes

17

Focus to BLK8x8 function

Parallelize
 Second Trial - Execution time

Estimate execution time by ARM CA9 architecture model

18

Architecture Mapping
 Mapping condition

Condition C – Mapping to Pandaboard
Mapping the two processes

into two CPU by SLX automatically

Condition D – Mapping to 16 core ARM architecture
Mapping each processes into a CPU by manual

19

Result
 Second Trial

20

Condition C Condition D

There is no effect of parallelization

Almost same

Parallelize
 Third Trial – CPN

Divide JPEG Encoder into 14 processes

21

Focus to Quantization function

Parallelize
 Third Trial - Execution time

Estimate execution time by ARM CA9 architecture model

22

Architecture Mapping
 Mapping condition

Condition E – Mapping to 16 core ARM architecture
Mapping each processes into a CPU by SLX automatically

23

Result
 Comparison in all conditions

24

0

10

20

30

40

50

60

70

80

Condition A Condition B Condition C Condition D Condition E

Execution Time - mSec

68.77

55.37 57.57 56.93 54.80

Conclusion
 We tried to optimize the JPEG Encoder at the first step

We use SILEXICA tool
To make the CPN is little difficult
SILEXICA is still semi-automatic flow
Need the automatic generation of the CPN

 We need some division strategy for optimization
There is a trade-off of division and communication between processes
We need the early architecture analysis with using virtual platform
We can get the image of strategy for optimization

 We can feel the limitation of commoditization
Hardware platform also important

25

Next Step
 Tool-based Architecture Analysis and Optimization

Fusion of tools – SILEXCIA and Virtual platform technology
Analysis architecture for performance by HW and SW co-design

26

Linux /
Windows

Algorithm

x86 CPU Hardware
Accelerator

Algorithm
kernel

Embedded
CPU

Embedded
CPU

Algorithm
kernel

Algorithm
kernel

Algorithm
Development Stage

Architecture Analysis
and Optimization Stage

Implementation Stage

Library Library

Embedded multi-core OS

Workload
Generator

Software
Partitioning

27

Thank You !

Version: [###] Classification: Internal Owner: [Insert name] 20/01/2017 28

