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Motivation
 Keywords of the issues

Commoditization of hardware platform
It is most important to make an excellent feature of the product

Difficult software development of the multi-core platform
Optimization and debugging is very difficult

The time shortening of the development
Time to Market is very important

Quality of the development
We have limitations of manual partitioning and mapping

 We need to make the new design flow to solve them !

 We need to catch up state-of-the-art design flow !

3



Traditional Design Flow Issues
 Algorithm Development issues

Algorithm design is separated from the system design
Algorithm engineers do not consider system implementation

 Implementation and Optimization issues 
Manual porting of algorithms to target operating system
Manual partitioning and mapping
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Our Vision
 Our Vision

To make the seamless design flow from Algorithm design to system 
implementation for multi-core architecture

 Our Scope
Our scope is the entire hardware and software  
Now Iʼm trying to make software partitioning design flow for multi-core
It is important to divide the whole of software for multi-core
It should be including Operating System portion – This is the next step !
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Outline
 We tried to optimize the only software part at the first step
 We tried to evaluate SILEXICA to optimize software part
 We tried to use the JPEG Encoder as the first case study
 We tried to divide JPEG Encoder into some processes
 We got a result that was not expected
 We were inspired by this result
 And, we are considering the next step
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State-of-the-Art Design Flow
 SILEXICA Design Flow
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Todayʼs presentation



State-of-the-Art Design Flow
 CPN
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Case Study
 Generic JPEG Encoder algorithm
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Case Study
 JPEG Encoder condition

 Input picture condition
500pixel x 375pixcel
RGB format image data

 SILEXICA version
SLX Tool Suite 2016.1
64bit Linux CentOS7
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Condition Value
Number of line at C source code 1121 lines

(without comment line)
Number of File 6 files (including header file)
Size of the executable file 
(Binary size)

494.5K Bytes
(Result of SLX compiler)

500 pixel

375 pixel



Analyze and Profile
 Call Graph of JPEG Encoder

11

We found some hot spot of
JPEG Encoder Algorithm.

We have focused here
as the first step

Hot spot



Parallelize
 First Trial – CPN code
 Divide JPEG Encoder into 2 processes

12



Parallelize
 First Trial – Execution time

Estimate execution time by ARM CA9 architecture model
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Architecture Mapping
 Mapping to Pandaboard
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Architecture Mapping
 Mapping condition

Condition A - typical
Mapping the two processes into one CPU

Condition B
Mapping the two processes into two CPU
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Result
 First condition
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Condition A

Condition B

20% performance improvement

Performance improvement by parallelization was 20%



Parallelize
 Second Trial – CPN

Divide JPEG Encoder into 5 processes
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Focus to BLK8x8 function



Parallelize
 Second Trial - Execution time

Estimate execution time by ARM CA9 architecture model
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Architecture Mapping
 Mapping condition

Condition C – Mapping to Pandaboard
Mapping the two processes 

into two CPU by SLX automatically

Condition D – Mapping to 16 core ARM architecture
Mapping each processes into a CPU by manual 
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Result
 Second Trial
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Condition C Condition D

There is no effect of parallelization

Almost same



Parallelize
 Third Trial – CPN

Divide JPEG Encoder into 14 processes
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Focus to Quantization function



Parallelize
 Third Trial - Execution time

Estimate execution time by ARM CA9 architecture model
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Architecture Mapping
 Mapping condition

Condition E – Mapping to 16 core ARM architecture
Mapping each processes into a CPU by SLX automatically
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Result
 Comparison in all conditions
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Conclusion
 We tried to optimize the JPEG Encoder at the first step

We use SILEXICA tool
To make the CPN is little difficult
SILEXICA is still semi-automatic flow
Need the automatic generation of the CPN

 We need some division strategy for optimization
There is a trade-off of division and communication between processes
We need the early architecture analysis with using virtual platform
We can get the image of strategy for optimization

 We can feel the limitation of commoditization
Hardware platform also important
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Next Step
 Tool-based Architecture Analysis and Optimization

Fusion of tools – SILEXCIA and Virtual platform technology
Analysis architecture for performance by HW and SW co-design
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Thank You !
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