
Software
optimization for
the multi-core
architecture
with State of the
art Design Flow

July 11th 2016

RICOH COMPANY, LTD.
Institute of ICT

Sadahiro Kimura

1

Agenda
 Motivation
 Traditional Design Flow Issue
 Our Vision
 Outline
 State-of-the-art Design Flow
 Case Study - First Target
 Analyze and Profile
 Parallelize
 Architecture Mapping
 Result
 Conclusion
 Next Step

2

Motivation
 Keywords of the issues

Commoditization of hardware platform
It is most important to make an excellent feature of the product

Difficult software development of the multi-core platform
Optimization and debugging is very difficult

The time shortening of the development
Time to Market is very important

Quality of the development
We have limitations of manual partitioning and mapping

 We need to make the new design flow to solve them !

 We need to catch up state-of-the-art design flow !

3

Traditional Design Flow Issues
 Algorithm Development issues

Algorithm design is separated from the system design
Algorithm engineers do not consider system implementation

 Implementation and Optimization issues
Manual porting of algorithms to target operating system
Manual partitioning and mapping

4

Linux /
Windows

Algorithm

Embedded OS

x86 CPU Embedded CPU

Algorithm
(modified)

Embedded
OS

Hardware
Accelerator

Algorithm
kernel

Embedded
CPU

Embedded
CPU

Algorithm
kernel

Algorithm
kernel

Algorithm
Development Stage

Software Porting Stage System Optimization Stage

Library Library Library

Embedded
OS

Manual
porting

Manual partitioning
and mapping

Our Vision
 Our Vision

To make the seamless design flow from Algorithm design to system
implementation for multi-core architecture

 Our Scope
Our scope is the entire hardware and software
Now Iʼm trying to make software partitioning design flow for multi-core
It is important to divide the whole of software for multi-core
It should be including Operating System portion – This is the next step !

5

Embedded OS

Embedded CPU

Algorithm
(modified)

Library

Target
Software

Embedded OS

Embedded CPU

Algorithm
(modified)

Library Final
Partitioning

Scope

Outline
 We tried to optimize the only software part at the first step
 We tried to evaluate SILEXICA to optimize software part
 We tried to use the JPEG Encoder as the first case study
 We tried to divide JPEG Encoder into some processes
 We got a result that was not expected
 We were inspired by this result
 And, we are considering the next step

6

Embedded OS

Embedded CPU

Algorithm
(modified)

Library

Target
Software

Embedded OS

Embedded CPU

Algorithm
(modified)

Library

Todayʼs
Partitioning

Scope

State-of-the-Art Design Flow
 SILEXICA Design Flow

7

Todayʼs presentation

State-of-the-Art Design Flow
 CPN

8

Case Study
 Generic JPEG Encoder algorithm

9

RGB
Data

RGB
To

YCbCr

Down
Sampling DCT

Quantization

Entropy
Encoder

Huffman coding

JPEG
Data

Case Study
 JPEG Encoder condition

 Input picture condition
500pixel x 375pixcel
RGB format image data

 SILEXICA version
SLX Tool Suite 2016.1
64bit Linux CentOS7

10

Condition Value
Number of line at C source code 1121 lines

(without comment line)
Number of File 6 files (including header file)
Size of the executable file
(Binary size)

494.5K Bytes
(Result of SLX compiler)

500 pixel

375 pixel

Analyze and Profile
 Call Graph of JPEG Encoder

11

We found some hot spot of
JPEG Encoder Algorithm.

We have focused here
as the first step

Hot spot

Parallelize
 First Trial – CPN code
 Divide JPEG Encoder into 2 processes

12

Parallelize
 First Trial – Execution time

Estimate execution time by ARM CA9 architecture model

13

Architecture Mapping
 Mapping to Pandaboard

14

Architecture Mapping
 Mapping condition

Condition A - typical
Mapping the two processes into one CPU

Condition B
Mapping the two processes into two CPU

15

Result
 First condition

16

Condition A

Condition B

20% performance improvement

Performance improvement by parallelization was 20%

Parallelize
 Second Trial – CPN

Divide JPEG Encoder into 5 processes

17

Focus to BLK8x8 function

Parallelize
 Second Trial - Execution time

Estimate execution time by ARM CA9 architecture model

18

Architecture Mapping
 Mapping condition

Condition C – Mapping to Pandaboard
Mapping the two processes

into two CPU by SLX automatically

Condition D – Mapping to 16 core ARM architecture
Mapping each processes into a CPU by manual

19

Result
 Second Trial

20

Condition C Condition D

There is no effect of parallelization

Almost same

Parallelize
 Third Trial – CPN

Divide JPEG Encoder into 14 processes

21

Focus to Quantization function

Parallelize
 Third Trial - Execution time

Estimate execution time by ARM CA9 architecture model

22

Architecture Mapping
 Mapping condition

Condition E – Mapping to 16 core ARM architecture
Mapping each processes into a CPU by SLX automatically

23

Result
 Comparison in all conditions

24

0

10

20

30

40

50

60

70

80

Condition A Condition B Condition C Condition D Condition E

Execution Time - mSec

68.77

55.37 57.57 56.93 54.80

Conclusion
 We tried to optimize the JPEG Encoder at the first step

We use SILEXICA tool
To make the CPN is little difficult
SILEXICA is still semi-automatic flow
Need the automatic generation of the CPN

 We need some division strategy for optimization
There is a trade-off of division and communication between processes
We need the early architecture analysis with using virtual platform
We can get the image of strategy for optimization

 We can feel the limitation of commoditization
Hardware platform also important

25

Next Step
 Tool-based Architecture Analysis and Optimization

Fusion of tools – SILEXCIA and Virtual platform technology
Analysis architecture for performance by HW and SW co-design

26

Linux /
Windows

Algorithm

x86 CPU Hardware
Accelerator

Algorithm
kernel

Embedded
CPU

Embedded
CPU

Algorithm
kernel

Algorithm
kernel

Algorithm
Development Stage

Architecture Analysis
and Optimization Stage

Implementation Stage

Library Library

Embedded multi-core OS

Workload
Generator

Software
Partitioning

27

Thank You !

Version: [###] Classification: Internal Owner: [Insert name] 20/01/2017 28

