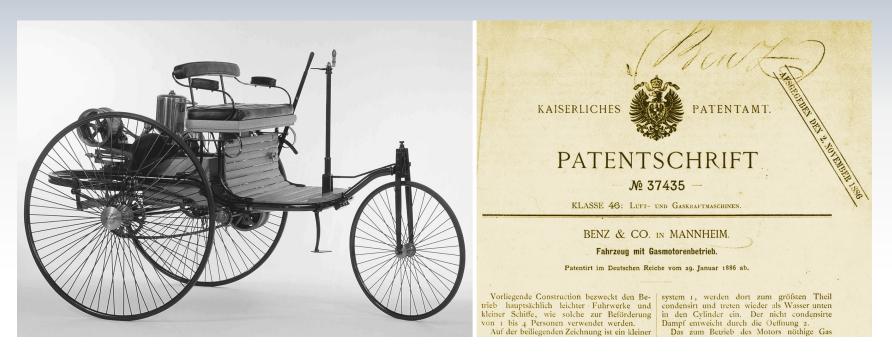
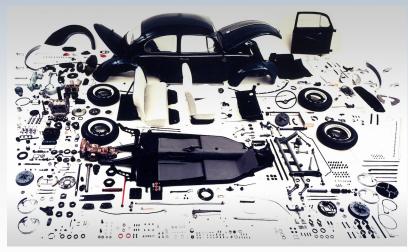
The Data-defined Vehicle Architecture The <u>AUTO</u>mobile becomes the auto<u>MOBILE</u>

Dr. Sebastian Wedeniwski

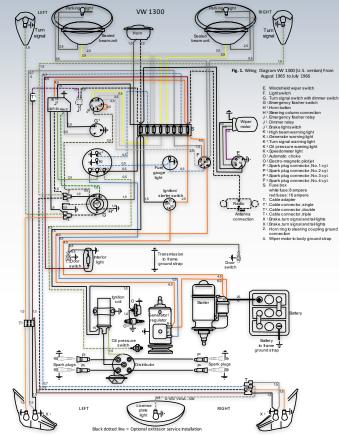

IBM Distinguished Engineer, CTO Global Industrial Sector

- Software-defined vehicles surrounded by historical structures
- > The mobility revolution shifts the vehicle to a software-defined service
- Critical business competencies in a globally transforming autoMOBILE
- Fundamental challenges to master data-defined vehicles
- > Outlook of a data-driven architecture for mobility as a service


Patent No. 37435 "Vehicle powered by gas engine" of 29 January 1886 is the birth certificate of the automobile

Absolutely no software!

In the mid-1960s, a Volkswagen Beetle contained only very few electrical parts – BUT no software-defined hardware


Some electrical parts in mass production

Parts

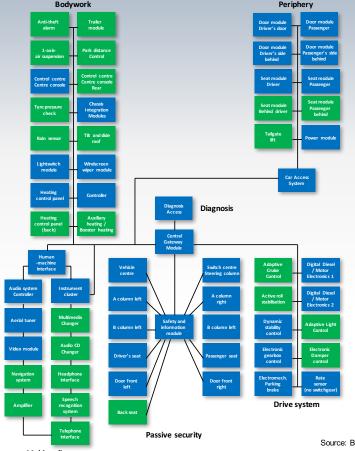
Battery Ignition Lighting system **Registration plate light** Horn Windscreen wiper motor Speedometer indicator lamps

generator ignition starter switch indicator switch dimmer/full beam/foot switch brake light switch horn actuator windscreen wiper switch

fuses main light switch indicator relay door contact switch oil pressure switch

As early as the beginning of the 2000s, there were 45 connected Electronic Control Units (ECUs) made by different manufacturers in the Volkswagen Phaeton

Cabling in the Phaeton has a total wire length of 3,860 m with a cable harness weighing 64 kg.


The bill of materials of the electrics consist of 11,136 parts.

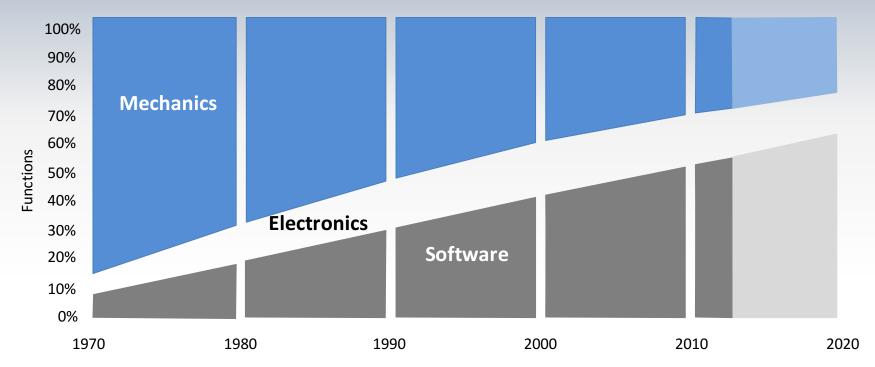
Only embedded software defined by hardware!

Electronic components (blue) and wiring system (brown) (Photo: Volkswagen)

In 2005, high variation of possible ECUs in the BMW 7 series (E65)

BMW 7 series from 2005 contained around 65 ECUs, connected via five bus systems with an embedded software scope of around 115 megabytes.

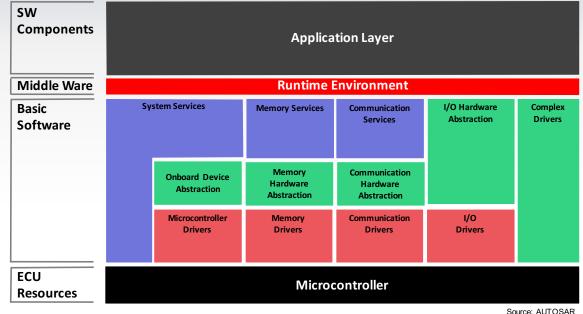
Every car gets an own fingerprint just by ECUs and software for standard equipment (green) and optional equipment (blue).


Source: S 400 HYBRID - own photo, Attribution, https://commons.wikimedia.org/w/index.php?curid=11526833

Source: BMW

Multimedia

Today, the share of software is already higher than that of mechanics


Source: ITQ GmbH (2014) Kompetenz in Mechatronik. München https://www.itg.de/files/itg_unternehmensbrosch_re_online.pdf

AUTOSAR (AUTomotive Open System ARchitecture) Electrical/Electronic architecture concept towards software-defined hardware

Over the past 20 years, there have been a number of efforts to standardize operational systems, bus systems, basic software and functional interfaces for the architecture of embedded systems.

Similarly to AUTOSAR, the JasPar is a consortium run primarily by Japanese companies, which also has other focuses

Aim to decouple the software in the embedded systems from the underlying hardware!

Short summary... Growing importance of Information Technology in Automotive

1886 Benz Patent Motor Car

Product	0% IT
Research & Development	Calculation support
Production	0%
Marketing & Sales	0%
Aftersales	0%
Administration	Calculation support

of the product and supporting **Digital Transformation** processes

Photos: Daimler AG

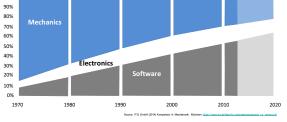
ecture

Enterprise Architecture

2016	
New Mercedes-Benz E-Class	

Connected Product	>60% (Software)
Research & Development	>70% (Computer-Aided Engineering)
Production	>60% (Computer-Aided Manufacturing)
Marketing & Sales	>40% (Internet)
Aftersales	>30% (Diagnostics)
Administration	>70% (HR, Finance, Procurement)

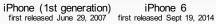
- Software-defined vehicles surrounded by historical structures
- > The mobility revolution shifts the vehicle to a software-defined service
- > Critical business competencies in a globally transforming digital age
- Fundamental challenges to master data-defined vehicles
- > Outlook of a data-driven architecture for mobility as a service



How has the car changed in a full development cycle since 2007? Too many improvements to summarize all...

ĕ

Is now really software or still hardware driving the new vehicle design?



IBM

How has the mobile, mobility and IoT changed since 2007?

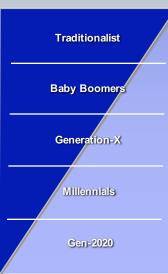
The smartphone is a software-defined key to mobility!

Accelerating advances in technology... are transforming every part of business

Advanced analytics Product lifecycle Cloud Pervasive connectivity Embedded sensors

Creating new products and business models

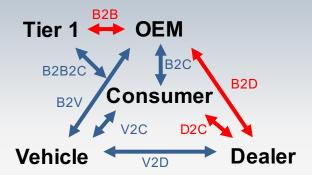
Driving engagement and customer experience


New hardware landscape defined completely by software! The automotive industry is still not there.

... because the nature of the consumer is changing

Generation	2010	2020	Grown up	Defines Invent
Traditionalist (born <1946) Silent Generation	4%	1%	Books	Fax
Baby Boomers (1946-1964) Growth Economies Generation	38%	22%	ΤV	PC
Generation-X (1965-1976) Tales for an Accelerated Culture	21%	20%	PC	Mobile Phone
Millennials (1977-1997) Digital Natives (Gen-Y)	37%	50%	PC & Internet	Google & Facebook
Gen-2020 (born > 1997) Hyper connected	0%	7%	Mobile Media	iPhone Apps

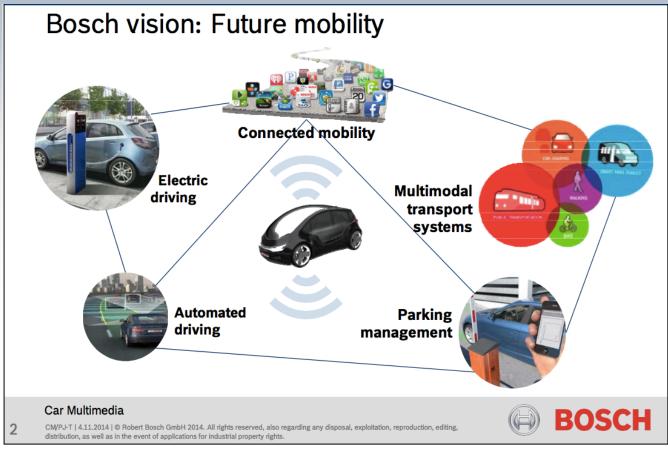
Hardware-defined Innovation


Software-defined Innovation

A new value network is evolving that is defined by software and data

Make and sell	\rightarrow	Sell and make
Product-centricity	\rightarrow	Customer-centricity
Output	\rightarrow	Performances
Transaction	\rightarrow	Relationship
Value delivery	\rightarrow	Value co-creation
Competition	\rightarrow	Co-supply
Value chain	\rightarrow	Value network
		Miraglia and Davies 2009

The Opportunity

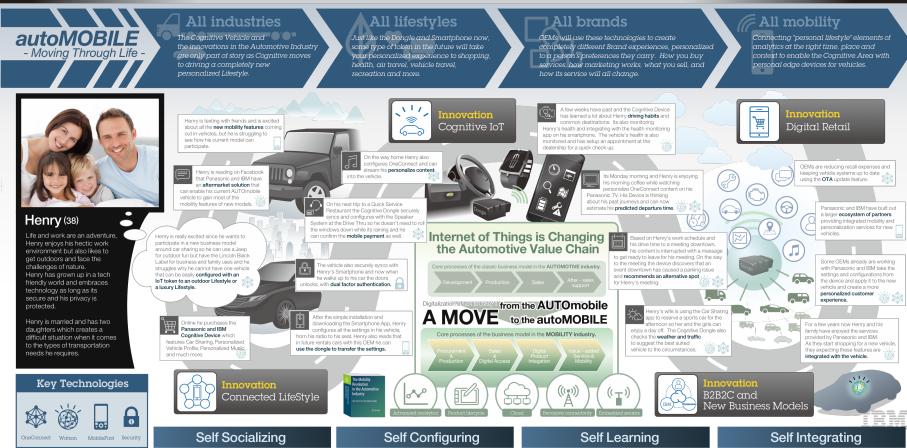

1.Digital technologies will enable OEMs to establish a much closer customer relationship.

2.In addition the "Connected Car" opens up new "Vehicle to Consumer" (V2C) and "Vehicle to Business" (B2V) relationships.

The History

Historically the Dealer-to-Consumer relationship, supported by the Business-to-Dealer relationship have been the key relationships in the automotive industry.

Example Tier 1 Supplier is changing their position in the value chain


IBM

People and Mobility are changing, a roadmap on how to get the cognitive technologies into existing vehicles, plus design for the future

Panasonic

Short summary... Short term aim is to enable services in the vehicle as a device Long term aim is to enable the vehicle as a personalized service space

 The internet is an institution of the connected vehicle
 Vehicle is an integral part of the customer's personal network

 Different business models
 Different business competences

Hardware-driven <u>AUTO</u>mobile

Software-driven autoMOBILE

- Software-defined vehicles surrounded by historical structures
- > The mobility revolution shifts the vehicle to a software-defined service
- > Critical business competencies in a globally transforming auto<u>MOBILE</u>
- Fundamental challenges to master data-defined vehicles
- > Outlook of a data-driven architecture for mobility as a service

Five Key Challenges

Unprecedented Data Volumes

- Sensors generating new kinds of data, as well as volumes 1000's of times higher than not connected vehicles.
- Big data and machine learning required to complement traditional reporting and analytics.

Fundamental Shifts in Business Models

- One-time purchases being transformed into 'pay as you grow' long term revenue streams.
- Traditional manufacturing and placebased businesses must become digital-centric organizations.

Incompatible Standards

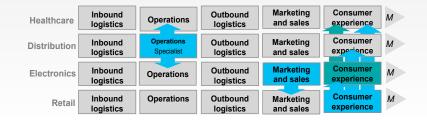
 Proliferation in competing platforms and incompatible standards raises costs and complexity, security risks, and time-to-market for data-driven innovators.

Entirely New Security Threats

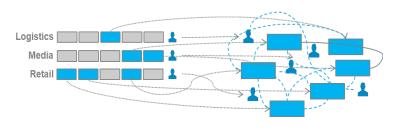
- Unknown devices connecting vehicles.
- Automobiles and connected plants are under growing attack.

New Privacy Landscape

- Collecting physical world data on people and objects.
- Market is slow grasping implications - stiffer regulations are likely.



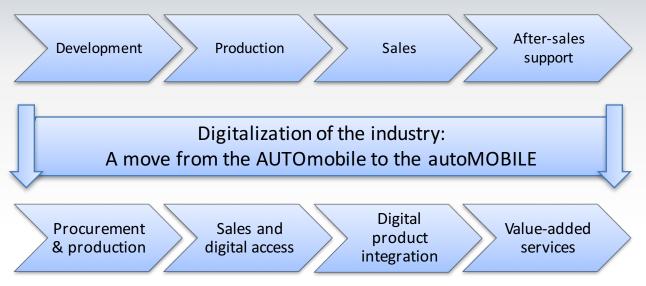
New and emerging technologies will combine to transform industries


Value chains will fragment

Inbound logistics	Design and operations	Outbound logistics	Marketing and sales	Consumer experience	
					Margin

Industries will converge

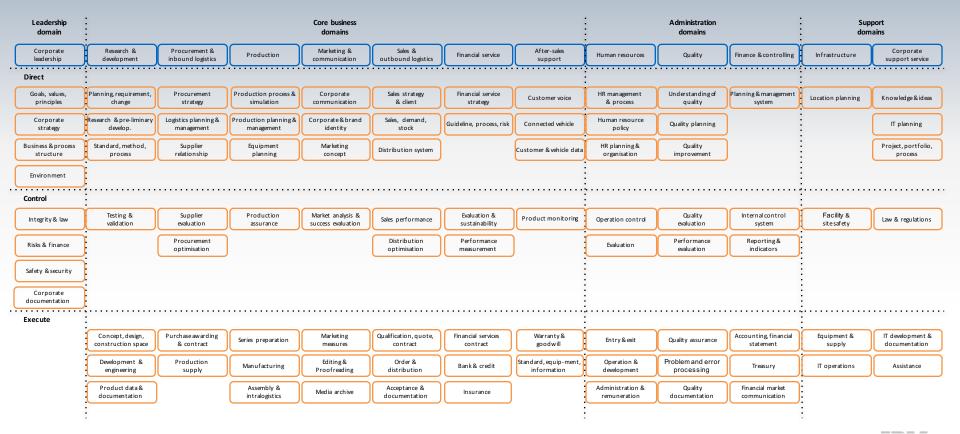
Ecosystems will emerge



The value chain is changing

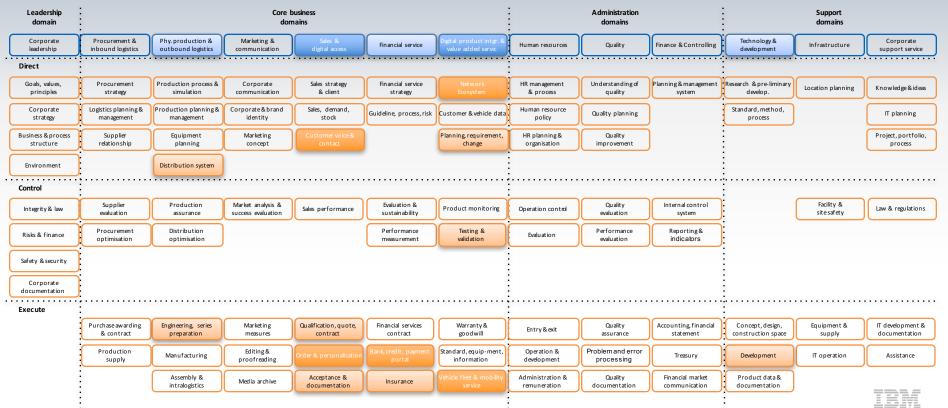
AUTO mobile in order to emphasize 'Auto' - the German word for car

Core processes of the classic business model in the automotive industry



Core processes of the business model in the mobility industry

auto<u>MOBILE</u> to emphasize the mobility of travelling from one place to another


Today, 89 business competencies in the automotive industry

IBM

Business competencies of the changing business architecture for the auto<u>MOBILE</u> value chain

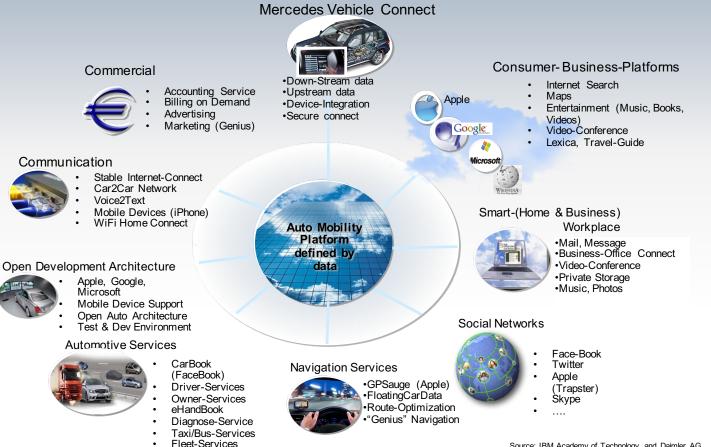
Primary focus on building up digital and mobility competencies

... further details

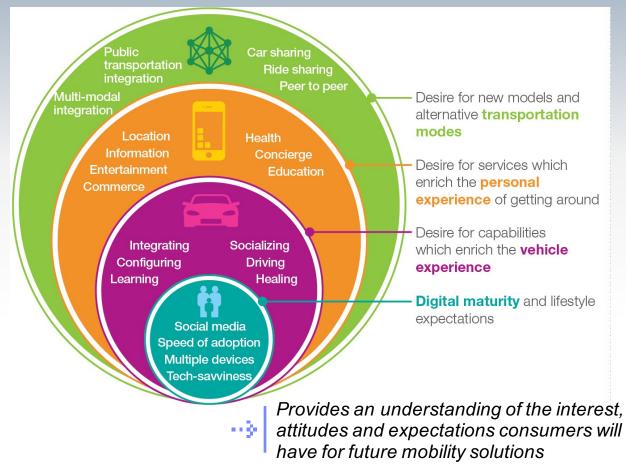
The Mobility Revolution in the Automotive Industry: How not to miss the digital turnpike!

The Internet of Things, Cloud Computing, Connected Vehicles, Big Data, Analytics – what does this have to do with the automotive industry? This book provides information about the future of mobility trends resulting from digitization, connectedness, personalization and data insights. The automotive industry is on the verge of undergoing a fundamental transformation. Large, traditional companies in particular will have to adapt, develop new business models and implement flexibility with the aid of appropriate enterprise architectures. Transforming critical business competencies is the key concept. The vehicle of the digital future is already here –who will shape it?

Sebastian Wedeniwski	The Mobility Revolution in the Automotive Industry	275
The Mobility Revolution in the Automotive Industry	年の 自動車ビジネスを変革する エンタープライズ・アーキテクチャ セバスチャン・ウェデニウスキ whether Weterwebt [#] 室下海子・町村益着・シュクルフ海子・最佳之 [#6]	Sebastian Wedeniwski Mobilitätsrevolution in der Automobilindustrie
How not to miss the digital turnpike	森北出版株式会社	Letzte Ausfahrt digital!


http://www.amazon.co.jp/dp/4627486316 http://www.amazon.com/dp/3662477874 http://www.amazon.com/dp/3662447827 http://www.springer.com/us/book/9783662477878 http://www.springer.com/de/book/9783662447826

- Software-defined vehicles surrounded by historical structures
- > The mobility revolution shifts the vehicle to a software-defined service
- Critical business competencies in a globally transforming autoMOBILE
- Fundamental challenges to master data-defined vehicles
- > Outlook of a data-driven architecture for mobility as a service



Potential Mercedes services defined 2009 – Common is data

Technologies & data trends which were NOT discussed in 2009

Automotive 2025: Industry without borders Engage with consumers, embrace mobility and exploit the ecosystem

A new relationship – people and cars How consumers around the world want cars to fit their lives

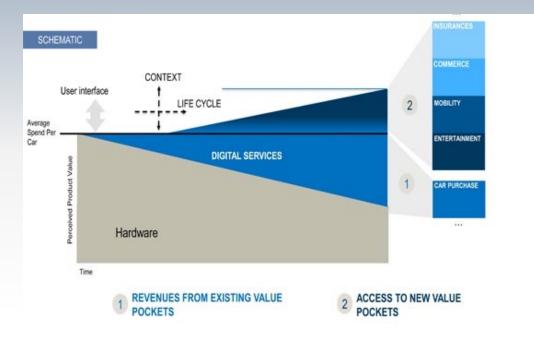
Source: IBM Institute of Business Value

June 9th, 2016 – Daimler Chief Executive Dieter Zetsche and Uber Chief Executive Travis Kalanick were interviewed together

Photo: dpa

Now roughly equal in value (stock market capitalization): German luxury car maker Daimler \$70B Silicon Valley ride-sharing firm Uber \$62.5B

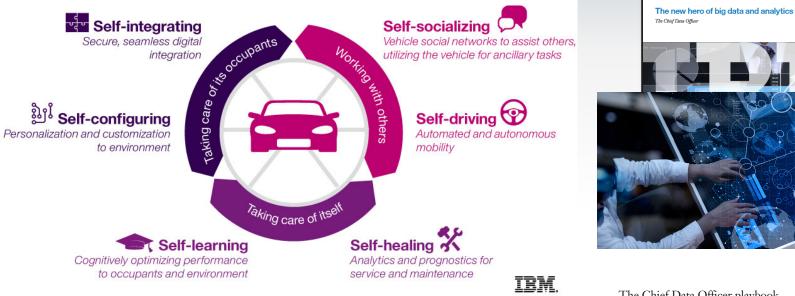
Daimler AG (Karl Benz) invented the first automobile Uber disrupted taxi business through new mobility services


Uber founded 2009 Daimler predecessor Daimler-Benz founded 1926 (1883-1926 Benz & Company, 1890-1926 Daimler Motoren Gesellschaft AG)

The challenge: How is Uber organized? How is Daimler organized? Where is the Chief Digital Officer aligning the product integration to a data-defined vehicle?

Relevance of digital experiences is continuously increasing

Source: BMW


 $\cdots \rbrace :$

The challenge: Where is the Chief Digital Officer aligning the product integration to a data-defined vehicle?

Short summary... The Chief Digital Officer aligns the digital product integration to a data-defined vehicle

Self-enabling vehicles

The Chief Data Officer playbook Creating a game plan to sharpen your digital edge

IBM Institute for Business Value

Desired Andrews

IBM Institute for Business Value, "The New Hero of Big Data and Analytics, The Chief Data Officer", June 2014

BM Institute for Rusiness Val

- Software-defined vehicles surrounded by historical structures
- > The mobility revolution shifts the vehicle to a software-defined service
- Critical business competencies in a globally transforming autoMOBILE
- Fundamental challenges to master data-defined vehicles
- > Outlook of a data-driven architecture for mobility as a service

Computers and the brain are different and complementary

~5 GHz, sequential, linear 10 Hz, parallel, high fan-out

100 W/cm² 10 mW/cm²

Separates memory, Integrates memory,

computation, communication computation, communication

Eras of computing

System Intelligence

Tabulating Punch cards Time card readers

1900

Programmable

Search ······>	Discovery
Deterministic	Probabilistic
Enterprise data •••••••	Big Data
Machine language ·····>	Natural language
Simple outputs ······>	Intelligent options

1950

2011

16 TrueNorth chips 16 million neurons

4 billion synapses

© 2015 International Business Machines Corporation

Cognitive

The digitalization is changing the product architecture in 3 different data areas to make it more intelligent

· --**iPhone** Ecosystem Ton Paid iPhone Ann Apps 🥮 🔊 🗀 🐼 🚔 Life architecture 13 iCloud

Data-defined Vehicle: Risks regarding endangering reputation / brand value Google Executive Chairman Eric Schmidt said: *"Google's policy is to get right up to the creepy line but not to cross it"*

How will a data-defined vehicle be produced? "Road Ready 3D-Printed Car"

Photo: Local Motors

OEM need to create the data-defined vehicle themselves or together with new types of partners

Short summary... Guiding principles of a data-driven architecture to provide mobility as a service in a cognitive era

AUTOmobile	\rightarrow	autoMOBILE
business rely on selling an integrated product	\rightarrow	business designed for relationship to consumer
designed by market	\rightarrow	designed to be globally available
build as an integrated system	\rightarrow	continuously integrate services
one product lifecycle		three separate lifecycles
defined by the mechanical engine	\rightarrow	defined by the personal space to overcome spatial distances
capture data for engineers to improve product	\rightarrow	data designed to serve consumers
real vehicle bill of material	\rightarrow	virtual vehicle bill of material
components and systems programming		machines are learning

Dr. Sebastian Wedeniwski

IBM Distinguished Engineer CTO Global Industrial Sector

wedeniwski@de.ibm.com

Facebook:	http://www.facebook.com/sebastian.wedeniwski
Twitter:	@wedeniwski
inkedIn:	http://www.linkedin.com/pub/sebastian-wedeniwski/2/64b/549/

Distinguished Architect

Association of Enterprise Architects

