
Customizable Hardware Abstraction

Shinya Takamaeda-Yamazaki
Nara Institute of Science and Technology (NAIST)

July 11, 2016
MPSoC2016@Nara
Mini Keynote

How do you design a custom hardware?

n by HDL (Hardware Description Language)
l Such as Verilog HDL and VHDL

l Fully customizable and high performanceJ

l Huge development efforts due to the few abstractionsL

n by HLS (High Level Synthesis)
l Such as C/C++ (Vivado HLS), Java (Max), OpenCL (Altera), …

l High producitivity by untimed design mannerJ

l Hard to customize how the compiler generates codesL
ü Sometimes cannot reach to the maximum performance

2

Motivation: How to keep both
productivity and customizability

n Tradeoffs between HDL and HLS
l High productivity by high-level abstraction

l High hardware quality by low-level customization

n How to keep both:
Allow users to build up a custom abstraction
l Seamless DSL from RTL to HLS:

Custom abstraction/method by using low-level abstractions

3

Customizable Hardware Abstraction

Veriloggen:
Explicit hardware modeling by Python

4

Design Generator by Python

from veriloggen import *
m = Module('blinkled')
clk = m.Input('CLK')
led = m.Output('LED', 8)
count = m.Reg('count', 32)
m.Assign(led(count[31:24]))
m.Always(Posedge(clk)(

count(count + 1))
hdl = m.to_verilog()
print(hdl)

blinkled

CLK RST

LED count

assign
always

Veriloggen Object

module blinkled (
input CLK,
output [7:0] LED

);
reg [31:0] count;
assign LED = count[31:24];
always @(posedge CLK) begin
count <= count + 1;

end
endmodule

Verilog Source Code

module

input

CLK

input

RST

blinkled

Verilog AST

to_verilog()

Verilog
AST

Generator

Verilog
Code

Generator

Run on Python Interpreter

Describing hardware construction
rule by utilizing Python power Verilog HDL code is generated

Code
generation

by run

First level abstraction of HDL component

5

Object construction by utilizing
Python capability

Module object

Reg object (of m)

"count <= 0" object

"count==1023" object

If object

Always object (of m)

Return complete Module
object

Code generation by run
n Verilog code is obtained by calling to_verilog() method

6

User-defined explicit abstraction:
Method extraction for coding pattern reuse

7

Coding pattern of RAM I/F

Adding two I/Fs by for-loop

Veriloggen.FSM:
FSM manager

8

Assignments for each state

Repeating an FSM pattern by
for-loop

Veriloggen has some
built-in abstractions:
FSM, Seq, Fixed, …

FSM manager object

ex)
UART sender w/ FSM

Going to next state w/o labels

Going to initial state

Synthesizing FSM circuits

Veriloggen.Dataflow:
Pipeline synthesis by operator overloads

9

Normal Python method that
can be executed as SW

Dataflow VariablePassing Dataflow variables instead
of normal variables

Output port
connection

and
Module

synthesis

Operator overload for dataflow

10

add

Operator
overload of

add (+)

Returns
Dataflow.Plus

object

Graph output by Veriloggen.Dataflow

11

3x3 stencil pipeline

Difference to HDL and HLS

n In DSL/HLS, source code structure is a circuit definition
l Reflection: getting the source code structure

ü A compiler analyzes the source code and convert into dataflow, etc.

l When a new part is added, the source code must be changed
ü Of course, a frequently-appeared pattern also must be described in the

source code againL

l Subset of the original language syntax can be utilizedL

n Veriloggen explicitly constructs a hardware source code
l No reflection: a target source code is constructed by run

ü Frequently-appeared coding patterns can be summarized by method
extraction and new user-defined class definition

ü All python features can be utilized for the code constructionJ

12

Evaluation: Productivity of Veriloggen

n Various hardware structures can be synthesized from a
single Python source code
l ex) obtained 4 sort circuits from Python code of 45 lines

l Delay registers and stall circuits are automatically inserted

l →High productivity of custom computing pipeline development

13

Python Verilog

Conclusion
n Customizable hardware abstraction is proposed

l Veriloggen: Explicit hardware modeling by Python

14

Design Generator by Python

from veriloggen import *
m = Module('blinkled')
clk = m.Input('CLK')
led = m.Output('LED', 8)
count = m.Reg('count', 32)
m.Assign(led(count[31:24]))
m.Always(Posedge(clk)(

count(count + 1))
hdl = m.to_verilog()
print(hdl)

blinkled

CLK RST

LED count

assign
always

Veriloggen Object

module blinkled (
input CLK,
output [7:0] LED

);
reg [31:0] count;
assign LED = count[31:24];
always @(posedge CLK) begin
count <= count + 1;

end
endmodule

Verilog Source Code

module

input

CLK

input

RST

blinkled

Verilog AST

to_verilog()

Verilog
AST

Generator

Verilog
Code

Generator

Run on Python Interpreter

