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Convolutional Neural Network (CNN)

• LeNet (1989)

• CNN consists of convolution layer and subsampling (max-pooling) 
layer



Convolution and Pooling

[Microsoft, 2015]

In convolution, # parameters = kxkxDxH



Convolution with Matrix Multiplication
(called Convolution Lowering)
• Input: 3x3x3

• Output: 2x2x2

• Convolutional kernel: 3x2x2

[Chetlur 2014]
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Measurement System

• Running CNNs (in OpenCL) on Galaxy 
S6 Edge
• Exynos 7420 (Mali T760) + LPDDR4 DRAM

• 6 power probes to 
• CPU, GPU (T760), two DRAM dies, …

Exynos 7420

Mail T760

Source: iFixit Source: ARM, Ltd.



AlexNet: 
Power Consumption
• Total 245mJ/image, 117ms

• GPU power > DRAM power

• Convolutional layers dominate total 
energy consumption and runtime

• At fully connected layers, GPU power 
drops while DRAM power increases 
• Due to a large number of memory accesses 

for weights and less data reuse, i.e., low 
core utilization (=long total idle time)

GPU

DRAM

C1 C2 C3 C4 C5 F6 F7 F8



VGG_S: 
Power Consumption
• Total 825mJ/image, 357ms

• Convolutional layers dominate total 
energy consumption and runtime

• At convolutional layers, DRAM 
consumes larger power than in AlexNet
due to a large number of weights

• At fully connected layers, similar trend 
as in AlexNet
• GPU power ~ DRAM power

AlexNet

VGG_S



GoogLeNet: 
Power Consumption
• Total 473mJ/image, 273ms

• 1st and 2nd convolutional layers consume 
~20% of total energy and runtime

• Inception modules 
• Relatively low power consumption in both GPU 

and DRAM 

• Power consumption fluctuates due to many 
convolution sub-layers in inception modules

• Fully connected layer (1M parameters) 
consumes a very little amount of power in 
GPU and DRAM
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Runtime and Power
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Typical CNN Design Steps

• Step 1: Train a large CNN
• Training based on back propagation

• The CNN under training will be over-parameterized, i.e., an over-design

• It is to facilitate fast convergence to good local minima



Local Minima are mostly Saddle Points in 
High-Dimensional Space



Redundancy in CNN

How to remove redundant feature maps?



Typical CNN Design Steps

• Step 1: Train a large CNN
• Training based on back propagation

• The CNN under training will be over-parameterized, i.e., an over-design

• It is to facilitate fast convergence to good local minima

• Step 2: Compress the trained CNN
• CNN compression aims at removing redundancy in the trained CNN

• It is especially important for mobile and embedded devices which have very 
limited computing resource



Existing Methods to Remove Redundancy

• Bit width optimization
• 32-bit  16-bit [NVIDIA Pascal]
• BinaryConnect [Bengio, NIPS15], XNOR-Net [Rastegari, 2016]

• Pruning
• Remove unimportant connections and neurons [Han, NIPS15]
• Non-uniform quantization and weight compression [Han, ICLR16 submission]

• Low-rank approximation
• Bi-clustering and truncated SVD [Denton, NIPS14]
• CP decomposition [Lebedev, ICLR15]
• Asymmetric 3D decomposition and truncated SVD [Zhang, arXiv:1505.06798]
• Tucker and variational Bayesian matrix factorization: ours
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Overall Flow

• More details
• Y. Kim, et al., “Compression of Deep Convolutional Neural Networks for Fast 

and Low Power Mobile Applications,” arXiv:1511.06530v1

http://arxiv.org/abs/1511.06530v1


Example of Truncated SVD: A~USVT

Take 3 largest square roots 
of eigenvaluesTake 3 eigenvectors

associated with the selected eigenvalues
Take 3 eigenvectors
associated with the selected eigenvalues

[K. Baker, Singular Value Decomposition Tutorial]

Error degrades accuracy. How to address this lost accuracy?



Tucker Method to Resolve Redundancy 
Problem: Reducing # Feature Maps

YX

Z Z’

U3 U4C

48

55

55

128

27

27

25 59

How to remove redundant feature maps?
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27

# feature maps is reduced at input (4825 in Z) 
and output (12859 in Z’)

1x1 convolutions are used at both input and
output to match with the original layers



Matrix Sizes are Reduced in Convolution

[Chetlur 2014]
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Reduction in Computation:
AlexNet Case

YX

Z Z’

U3 U4C

Conv2: # multiplications = 48x5x5x128x27x27
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48x25x55x55+25x5x5x59x27x27+59x128x27x27

3.1X less computation!
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[Kim, 2015]



Error in Truncated SVD

Take 3 largest square roots 
of eigenvalues

Take 3 eigenvectors
associated with the selected eigenvalues

Take 3 eigenvectors
associated with the selected eigenvalues

[K. Baker, Singular Value Decomposition Tutorial]

Error degrades accuracy. How to reclaim lost accuracy?



Fine-tuning

• Low-rank approximation loses 
accuracy

• Fine-tuning recovers lost error
• 1 epoch: 1 run of back propagation 

with the entire training set

[Kim, 2015]



Results on Titan X and Galaxy S6

• Significant reductions in energy consumption and runtime
• Energy: 4.26X~1.6X

• Runtime: 3.68X~1.42X

• Comparable to Zhang et al.’s

[Kim, 2015]

3.41X 4.26X 1.6X

Galaxy S6 results



Summary

• CNNs are often over-parameterized
• For fast convergence to good local minima during training
• Redundancy needs to be removed for test-time performance and power 

consumption

• Low-rank approximation
• Is a promising solution to remove redundancy, statically
• Reduces matrix sizes in CNN computation thereby offering less computation and 

smaller model size
• Rank selection: variational Bayesian matrix factorization
• Low-rank approximation: Tucker method, e.g., reducing # feature maps

• Can be applied together with other optimizations, e.g., hardware accelerator, bit-
width optimization, FFT, cascading, etc.

• Next steps
• Dynamic solutions to remove redundancy


