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Convolutional Neural Network (CNN)

• LeNet (1989)

• CNN consists of convolution layer and subsampling (max-pooling) 
layer



Convolution and Pooling

[Microsoft, 2015]

In convolution, # parameters = kxkxDxH



Convolution with Matrix Multiplication
(called Convolution Lowering)
• Input: 3x3x3

• Output: 2x2x2

• Convolutional kernel: 3x2x2

[Chetlur 2014]
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Measurement System

• Running CNNs (in OpenCL) on Galaxy 
S6 Edge
• Exynos 7420 (Mali T760) + LPDDR4 DRAM

• 6 power probes to 
• CPU, GPU (T760), two DRAM dies, …

Exynos 7420

Mail T760

Source: iFixit Source: ARM, Ltd.



AlexNet: 
Power Consumption
• Total 245mJ/image, 117ms

• GPU power > DRAM power

• Convolutional layers dominate total 
energy consumption and runtime

• At fully connected layers, GPU power 
drops while DRAM power increases 
• Due to a large number of memory accesses 

for weights and less data reuse, i.e., low 
core utilization (=long total idle time)

GPU

DRAM

C1 C2 C3 C4 C5 F6 F7 F8



VGG_S: 
Power Consumption
• Total 825mJ/image, 357ms

• Convolutional layers dominate total 
energy consumption and runtime

• At convolutional layers, DRAM 
consumes larger power than in AlexNet
due to a large number of weights

• At fully connected layers, similar trend 
as in AlexNet
• GPU power ~ DRAM power

AlexNet

VGG_S



GoogLeNet: 
Power Consumption
• Total 473mJ/image, 273ms

• 1st and 2nd convolutional layers consume 
~20% of total energy and runtime

• Inception modules 
• Relatively low power consumption in both GPU 

and DRAM 

• Power consumption fluctuates due to many 
convolution sub-layers in inception modules

• Fully connected layer (1M parameters) 
consumes a very little amount of power in 
GPU and DRAM
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Runtime and Power
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Typical CNN Design Steps

• Step 1: Train a large CNN
• Training based on back propagation

• The CNN under training will be over-parameterized, i.e., an over-design

• It is to facilitate fast convergence to good local minima



Local Minima are mostly Saddle Points in 
High-Dimensional Space



Redundancy in CNN

How to remove redundant feature maps?



Typical CNN Design Steps

• Step 1: Train a large CNN
• Training based on back propagation

• The CNN under training will be over-parameterized, i.e., an over-design

• It is to facilitate fast convergence to good local minima

• Step 2: Compress the trained CNN
• CNN compression aims at removing redundancy in the trained CNN

• It is especially important for mobile and embedded devices which have very 
limited computing resource



Existing Methods to Remove Redundancy

• Bit width optimization
• 32-bit  16-bit [NVIDIA Pascal]
• BinaryConnect [Bengio, NIPS15], XNOR-Net [Rastegari, 2016]

• Pruning
• Remove unimportant connections and neurons [Han, NIPS15]
• Non-uniform quantization and weight compression [Han, ICLR16 submission]

• Low-rank approximation
• Bi-clustering and truncated SVD [Denton, NIPS14]
• CP decomposition [Lebedev, ICLR15]
• Asymmetric 3D decomposition and truncated SVD [Zhang, arXiv:1505.06798]
• Tucker and variational Bayesian matrix factorization: ours
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Overall Flow

• More details
• Y. Kim, et al., “Compression of Deep Convolutional Neural Networks for Fast 

and Low Power Mobile Applications,” arXiv:1511.06530v1

http://arxiv.org/abs/1511.06530v1


Example of Truncated SVD: A~USVT

Take 3 largest square roots 
of eigenvaluesTake 3 eigenvectors

associated with the selected eigenvalues
Take 3 eigenvectors
associated with the selected eigenvalues

[K. Baker, Singular Value Decomposition Tutorial]

Error degrades accuracy. How to address this lost accuracy?



Tucker Method to Resolve Redundancy 
Problem: Reducing # Feature Maps

YX

Z Z’

U3 U4C

48

55

55

128

27

27

25 59

How to remove redundant feature maps?

55

55

27

27

# feature maps is reduced at input (4825 in Z) 
and output (12859 in Z’)

1x1 convolutions are used at both input and
output to match with the original layers



Matrix Sizes are Reduced in Convolution

[Chetlur 2014]

128 59

48x3x3 25x3x3

48x3x3


25x3x3

27x27
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Reduction in Computation:
AlexNet Case

YX

Z Z’

U3 U4C

Conv2: # multiplications = 48x5x5x128x27x27

48

55

55

128

27

27

25 59

48x25x55x55+25x5x5x59x27x27+59x128x27x27

3.1X less computation!

55

55

27

27

[Kim, 2015]



Error in Truncated SVD

Take 3 largest square roots 
of eigenvalues

Take 3 eigenvectors
associated with the selected eigenvalues

Take 3 eigenvectors
associated with the selected eigenvalues

[K. Baker, Singular Value Decomposition Tutorial]

Error degrades accuracy. How to reclaim lost accuracy?



Fine-tuning

• Low-rank approximation loses 
accuracy

• Fine-tuning recovers lost error
• 1 epoch: 1 run of back propagation 

with the entire training set

[Kim, 2015]



Results on Titan X and Galaxy S6

• Significant reductions in energy consumption and runtime
• Energy: 4.26X~1.6X

• Runtime: 3.68X~1.42X

• Comparable to Zhang et al.’s

[Kim, 2015]

3.41X 4.26X 1.6X

Galaxy S6 results



Summary

• CNNs are often over-parameterized
• For fast convergence to good local minima during training
• Redundancy needs to be removed for test-time performance and power 

consumption

• Low-rank approximation
• Is a promising solution to remove redundancy, statically
• Reduces matrix sizes in CNN computation thereby offering less computation and 

smaller model size
• Rank selection: variational Bayesian matrix factorization
• Low-rank approximation: Tucker method, e.g., reducing # feature maps

• Can be applied together with other optimizations, e.g., hardware accelerator, bit-
width optimization, FFT, cascading, etc.

• Next steps
• Dynamic solutions to remove redundancy


