Compressing Convolutional Neural Network for High Performance and Low Power Consumption

Yongdeok Kim^{*}, Eunhyeok Park, Sungjoo Yoo, Taelim Choi^{*}, Lu Yang^{*} and Dongjun Shin^{*}

> Software Lab, Samsung Electronics* Computing Memory Architecture Lab., CSE, SNU

> > Published in ICLR 2016

Agenda

- Introduction
 - Convolutional neural network
 - Matrix multiplication-based implementation of convolution
 - Profiling CNNs on mobile GPU
- Redundancy in CNNs
 - Problem and existing methods to remove redundancy
- Proposed CNN compression method
 - Low-rank approximation based on Tucker and variational Bayesian matrix factorization
 - Evaluations on Titan X and Galaxy S6
- Summary

Convolutional Neural Network (CNN)

• LeNet (1989)

 CNN consists of convolution layer and subsampling (max-pooling) layer

Convolution and Pooling

Input Feature Map

Convolution Output

Pooling

In convolution, # parameters = kxkxDxH

[Chetlur 2014]

Convolution with Matrix Multiplication (called Convolution Lowering)

F_m

(= = 7						
D4	D5	D7	D8			
D3	D4	D6	D7			
D1	D2	D4	D5			
DO	D1	D3	D4			
D4	D5	D7	D8			
D3	D4	D6	D7			
D1	D2	D4	D5			
D0	D1	D3	D4			
D4	D5	D7	D8			
D3	D4	D6	D7			
D1	D2	D4	D5			
DO	D1	D3	D4			

 \boldsymbol{O}_m

Agenda

- Introduction
 - Convolutional neural network
 - Matrix multiplication-based implementation of convolution
 - Profiling CNNs on mobile GPU
- Redundancy in CNNs
 - Problem and existing methods to remove redundancy
- Proposed CNN compression method
 - Low-rank approximation based on Tucker and variational Bayesian matrix factorization
 - Evaluations on Titan X and Galaxy S6
- Summary

Measurement System

- Running CNNs (in OpenCL) on Galaxy S6 Edge
 - Exynos 7420 (Mali T760) + LPDDR4 DRAM
- 6 power probes to
 - CPU, GPU (T760), two DRAM dies, ...

AlexNet: Power Consumption

- Total 245mJ/image, 117ms
 - GPU power > DRAM power
- Convolutional layers dominate total energy consumption and runtime
- At fully connected layers, GPU power drops while DRAM power increases
 - Due to a large number of memory accesses for weights and less data reuse, i.e., low core utilization (=long total idle time)

VGG_S: Power Consumption

- Total 825mJ/image, 357ms
- Convolutional layers dominate total energy consumption and runtime
- At convolutional layers, DRAM consumes larger power than in AlexNet due to a large number of weights
- At fully connected layers, similar trend as in AlexNet
 - GPU power ~ DRAM power

GoogLeNet: Power Consumption

- Total 473mJ/image, 273ms
- 1st and 2nd convolutional layers consume ~20% of total energy and runtime
- Inception modules
 - Relatively low power consumption in both GPU and DRAM
 - Power consumption fluctuates due to many convolution sub-layers in inception modules
- Fully connected layer (1M parameters) consumes a very little amount of power in GPU and DRAM

AlexNet, VGG_S vs GoogLeNet: Top-5, Runtime and Power

Time [ms]

Agenda

- Introduction
 - Convolutional neural network
 - Matrix multiplication-based implementation of convolution
 - Profiling CNNs on mobile GPU
- Redundancy in CNNs
 - Problem and existing methods to remove redundancy
- Proposed CNN compression method
 - Low-rank approximation based on Tucker and variational Bayesian matrix factorization
 - Evaluations on Titan X and Galaxy S6
- Summary

Typical CNN Design Steps

- Step 1: Train a large CNN
 - Training based on back propagation
 - The CNN under training will be over-parameterized, i.e., an over-design
 - It is to facilitate fast convergence to good local minima

Local Minima are mostly Saddle Points in High-Dimensional Space

ConvNets: till 2012

Redundancy in CNN

- Problem:
 - With patch-level training, the learning algorithm must reconstruct the entire patch with a single feature vector
 - But when the filters are used convolutionally, neighboring feature vectors will be highly redundant

weights :-0.2828 - 0.3043

Patch-level training produces lots of filters that are shifted versions of each other.

How to remove redundant feature maps?

Typical CNN Design Steps

- Step 1: Train a large CNN
 - Training based on back propagation
 - The CNN under training will be over-parameterized, i.e., an over-design
 - It is to facilitate fast convergence to good local minima
- Step 2: Compress the trained CNN
 - CNN compression aims at removing redundancy in the trained CNN
 - It is especially important for mobile and embedded devices which have very limited computing resource

Existing Methods to Remove Redundancy

- Bit width optimization
 - 32-bit \rightarrow 16-bit [NVIDIA Pascal]
 - BinaryConnect [Bengio, NIPS15], XNOR-Net [Rastegari, 2016]
- Pruning
 - Remove unimportant connections and neurons [Han, NIPS15]
 - Non-uniform quantization and weight compression [Han, ICLR16 submission]
- Low-rank approximation
 - Bi-clustering and truncated SVD [Denton, NIPS14]
 - CP decomposition [Lebedev, ICLR15]
 - Asymmetric 3D decomposition and truncated SVD [Zhang, arXiv:1505.06798]
 - Tucker and variational Bayesian matrix factorization: ours

Agenda

- Introduction
 - Convolutional neural network
 - Matrix multiplication-based implementation of convolution
 - Profiling CNNs on mobile GPU
- Redundancy in CNNs
 - Problem and existing methods to remove redundancy
- Proposed CNN compression method
 - Low-rank approximation based on Tucker and variational Bayesian matrix factorization
 - Evaluations on Titan X and Galaxy S6
- Summary

Overall Flow

0. Original CNN.

- 1. Apply VMBF on mode-3 / mode-4 matricization to determine rank of Tucker-2 decomposition.
- 2. Apply Tucker-2 / Tucker-1 decomposition.
- 3. Fine-tune the entire network to recover accuracy.

- More details
 - Y. Kim, et al., "Compression of Deep Convolutional Neural Networks for Fast and Low Power Mobile Applications," arXiv:1511.06530v1

Example of Truncated SVD: A~USV^T

Tucker Method to Resolve Redundancy Problem: Reducing # Feature Maps

Problem:

- With patch-level training, the learning algorithm must reconstruct the entire patch with a single feature vector
- But when the filters are used convolutionally, neighboring feature vectors will be highly redundant How to remove redundant feature maps?

weights :-0,2828 - 0,3043

Patch-level training produces lots of filters that are shifted versions of each other.

feature maps is reduced at input (48 \rightarrow 25 in **Z**) and output (128 \rightarrow 59 in **Z**')

1x1 convolutions are used at both input and output to match with the original layers

Yann LeCun

Matrix Sizes are Reduced in Convolution

Reduction in Computation: AlexNet Case

Layer	S/R3	T/R_4	Weights	FLOPs	S6
conv1	3	96	35K	105M	15.05 ms
conv1*		26	11K	36M(=29+7)	10.19m(=8.28+1.90)
(imp.)			$(\times 2.92)$	$(\times 2.92)$	$(\times 1.48)$
conv2	48 imes 2	128×2	307K	224M	24.25 ms
conv2*	25×2	59×2	91K	67M(=2+54+11)	10.53 ms(=0.80+7.43+2.30)
(imp.)			$(\times 3.37)$	$(\times 3.37)$	$(\times 2.30)$
conv3	256	384	885K	150M	18.60ms
conv3*	105	112	178K	30M(=5+18+7)	4.85 ms(=1.00+2.72+1.13)
(imp.)			$(\times 5.03)$	$(\times 5.03)$	$(\times 3.84)$
conv4	192×2	192×2	664K	112M	15.17ms
conv4*	49×2	46×2	77K	13M(=3+7+3)	4.29 ms(=1.55+1.89+0.86)
(imp.)			$(\times 7.10)$	$(\times 7.10)$	$(\times 3.53)$
conv5	192×2	128×2	442K	75.0M	10.78ms
conv5*	40×2	34×2	49K	8.2M(=2.6+4.1+1.5)	3.44 ms(=1.15+1.61+0.68)
(imp.)			$(\times 9.11)$	$(\times 9.11)$	$(\times 3.13)$
fc6	256	4096	37.7M	37.7M	18.94ms
fc6*	210	584	6.9M	8.7M(=1.9+4.4+2.4)	5.07 ms(=0.85+3.12+1.11)
(imp.)			$(\times 8.03)$	$(\times 4.86)$	$(\times 3.74)$
fc7	4096	4096	16.8M	16.8M	7.75ms
fc7*		301	2.4M	2.4M(=1.2+1.2)	1.02 ms(=0.51+0.51)
(imp.)			$(\times 6.80)$	$(\times 6.80)$	$(\times 7.61)$
fc8	4096	1000	4.1M	4.1M	2.00ms
fc8*		195	1.0M	1.0M(=0.8+0.2)	$0.66 \text{ms}(=0.44 \pm 0.22)$
(imp.)			$(\times 4.12)$	$(\times 4.12)$	$(\times 3.01)$

Error in Truncated SVD

[Kim, 2015]

Fine-tuning

- Low-rank approximation loses accuracy
- Fine-tuning recovers lost error
 - 1 epoch: 1 run of back propagation with the entire training set

[Kim, 2015]

Results on Titan X and Galaxy S6

- Significant reductions in energy consumption and runtime
 - Energy: 4.26X~1.6X
 - Runtime: 3.68X~1.42X
 - Comparable to Zhang et al.'s

Model	Top-5	Weights	FLOPs	S	6	Titan X
AlexNet	80.03	61M	725M	117ms	245mJ	0.54ms
AlexNet*	78.33	11M	272M	43ms	72mJ	0.30ms
(imp.)	(-1.70)	$(\times 5.46)$	$(\times 2.67)$	$(\times 2.72)$	$(\times 3.41)$	$(\times 1.81)$
VGG-S	84.60	103M	2640M	357ms	825mJ	1.86ms
$VGG-S^*$	84.05	14M	549M	97ms	193mJ	0.92ms
(imp.)	(-0.55)	$(\times 7.40)$	$(\times 4.80)$	$(\times 3.68)$	$(\times 4.26)$	$(\times 2.01)$
GoogLeNet	88.90	6.9M	1566M	273ms	473mJ	1.83ms
GoogLeNet*	88.66	4.7M	760M	192ms	296mJ	1.48ms
(imp.)	(-0.24)	$(\times 1.28)$	$(\times 2.06)$	$(\times 1.42)$	$(\times 1.60)$	$(\times 1.23)$
VGG-16	89.90	138M	15484M	1926ms	4757mJ	10.67ms
VGG-16*	89.40	127M	3139M	576ms	1346mJ	4.58ms
(imp.)	(-0.50)	$(\times 1.09)$	$(\times 4.93)$	$(\times 3.34)$	$(\times 3.53)$	$(\times 2.33)$

Figure 5: Power consumption over time for each model. (Blue: GPU, Red: main memory).

250

250

Summary

- CNNs are often over-parameterized
 - For fast convergence to good local minima during training
 - Redundancy needs to be removed for *test-time* performance and power consumption
- Low-rank approximation
 - Is a promising solution to remove redundancy, *statically*
 - Reduces matrix sizes in CNN computation thereby offering less computation and smaller model size
 - Rank selection: variational Bayesian matrix factorization
 - Low-rank approximation: Tucker method, e.g., reducing # feature maps
 - Can be applied together with other optimizations, e.g., hardware accelerator, bitwidth optimization, FFT, cascading, etc.
- Next steps
 - *Dynamic* solutions to remove redundancy