An Integrated Optical Parallel Adder: A First Step towards Light-Speed Data Path Operation

Tohru ISHIHARA
Kyoto University

This work is done in collaboration with NTT Nanophotonics center and Kyushu University

Beyond Optical Communication

Our focus in this talk

Why Optical Data Path?

- Computation can be done by just passing the optical signal through a "pass gate"

Optical Pass Gate

Why Optical PG for Data Path?

- Good at data path operation
\checkmark Light speed operation
Good at serial connection
NOT good at cascade connection (light speed)

(OE \& switching delay involved)

\checkmark Good at pass/cross propagations (XOR and MUX)

XOR

Arithmetic Operation with OPG

- XOR/MUX-dominant data-path operation \checkmark Parallel Adder, Multiplier, and Barrel Shifter etc.

\checkmark Parallel adder as a first step
> Can be constructed with serial connections only

Optical Full Adder

Design and Evaluation: 8-bit Adder

8-bit CMOS Adder as Comparison

16 nm High Performance CMOS Technology PTM

Results of OptiSPICE Simulation

$>$ Optoelectronic Circuit Simulator (HSPICE engine)
> Light-speed parallel adder operation confirmed

- Per stage delay: ~ 1 ps, Initial OE and switching delay: ~10ps
- 8-bit CMOS adder with 16nm HP PTM: 174 ps

Power Loss in Adder Operation

Power halves every 2 digits

Summary

- 8-bit parallel adder is designed with OPG
- Light-speed operation is confirmed
- Per digit delay: OPG ~1 ps, CMOS 22 ps
- 8 -bit total delay: OPG ~ 17 ps, CMOS 174 ps
- Power loss is big issue to be resolved
- Per digit power loss ~30\%
- Future work
- Extend it to more complicated functions

