

1

Data Compression Processor for Biomedical Information Sensing Platform

Yoshinori Takeuchi and Masaharu Imai Graduate School of Information Science and Technology, Osaka University, Japan

MPSoC 2016, Nara Hotel, Nara, Japan 2016/7/11-15

Biomedical information sensing node

University

Biomedical information sensing system

- A lot of small nodes (processors) are embedded into the body
- Data is transferred by wireless communications
- Small size/ long term operation should be required
- Systems should handle huge amount of data
 - Large storage size
 - Long time and large energy consumption for data transmission
- Low power/energy data compression method and implementation
 - Especially, lossless data compression
 - Data is used for diagnosis and treatment of disease

Example of Biomedical information

Conventional data compression methods

- Huffman coding
- Adaptive Huffman coding
- Arithmetic coding
- Dictionary-style coding
- miniLZO [1]
 - One of the most efficient data compression algorithms
 - Used for the biomedical information compression

[1] " Oberhumer.com GmbH, LZO Professional data compression library," http://www.oberhumer.com/

Distribution of differences between consecutive data

University

8

Proposed compression method (2/3)

Proposed compression method (3/3)

3. Exponential-Golomb coding

- Encoding steps of exponential-Golomb coding
 - Let w be the input to encode, and k be the parameter
 - 1. Determine *i* that satisfies the following inequation

$$\Box \quad \sum_{j=0}^{i-1} 2^{j+k} \le w < \sum_{j=0}^{i} 2^{j+k} , i \ge 0$$

- 2. Form the prefix of *i* 1s to codeword
- 3. Append the separator 0 to the end of prefix
- 4. Calculate the value of

$$w - \sum_{j=0}^{i-1} 2^{j+k}$$

as a k + i bit binary number, and append it after the separator 0

Metrics of Compression (1/2)

1. Compression Ratio

 $CR = D_o/D_c$

D_o: Raw data size

 D_c : Compressed data size

2. Compression Error

Percentage Root-mean-square Difference (PRD)

$$PRD = 100 \times \sqrt{\sum_{i=1}^{N} (x_i - y_i)^2 / \sum_{i=1}^{N} x_i^2}$$

xi: Raw data, yi: Reconstructed data from compressed data

11

MPSoC 2016, Nara Hotel, Nara, Japan 2016/7/11-15

Metrics of Compression (2/2)

- 3. Power consumption
- 4. Energy consumption

Comparison of Compression Ratio

 Exponential Golomb shows the highest compression ratio among others.

Data	Golomb (m=3)	Golomb- Rice (k=I)	Exponential Golomb (k=0)	Semi- Exponential Golomb (k=0)
Intravesical Pressure	3.23	3.13	3.95	3.89
Rectum Pressure	2.92	2.69	3.92	3.83
Harmonic Average	3.06	2.89	3.94	3.86
13	MPSo	C 2016, Nara Hotel, N	ara, Japan 2016/7/1	1-15 Osaka

University

Comparison of Compression Ratio against Conventional Methods

 Exponential Golomb coding shows the largest and more stable compression ratio.

Requirements to data compression in biomedical information sensing systems

- Most of the biomedical information sensing systems use instruction set processors
 - Originally, control sensor devices, analog to digital converter (ADC), peripherals, and data communication
- Data compression algorithms perform bit manipulation operations frequently
 - Conventional RISC processors or so-called general purpose processors (GPP)
 - Require many execution cycles and large energy consumption to handle bit manipulation operations

ASIP implementation for exponential-Golomb code

- Application domain specific instruction set processor (ASIP)
 - Enables high performance per chip area
 - Achieves high performance per energy consumption
- Implementation for exponential-Golomb coding
 - Base processor : a 16 bit RISC processor Brownie Micro 16 (BM-16)
 - 33 RISC instructions, 16 general purpose registers, and three stage pipeline
 - To enhance the performance of BM-16
 - Added seven dedicated instructions

Experimental environment

- ASIP Meister (ASIP Solutions, Inc.)
 - Base processor : BM-16
- Design Compiler (Synopsys, Inc.)
 - 0.18 μm CMOS library
 - Operation voltage 1.8 [V]
 - Operation frequency 100 [MHz]
- ModelSim (Mentor Graphics Corp.)
- Test data
 - 8 sets of intravesical pressure
 - 8 sets of rectum pressure
 - Each set includes 1,000 samples

Results of proposed implementation

	RISC (A)	ASIP (B)	(B-A)/A (%)	
Area (µm²)	61,316	38,53	+126	
Power (µW/MHz)	38.9	65.7	+69	
Exec. Cycles	86,165	7, 77	-80	
Energy (µJ)	3.35	1.13	-66	
MPSoC 2016, Nara Hotel, Nara, Japan 2016/7/11-15				

Conclusion and future work

Conclusion

- Efficient lossless data compression method based on exponential-Golomb code was proposed
 - Proposed method takes advantage of the characteristics of target information
- Implementation of a low energy consumption ASIP using dedicated instruction set for biomedical information compression was proposed

Future work

- Application of proposed compression method to other biomedical information
- Total evaluation of biomedical information sensing system

