
Yuan Xie

University of California, Santa Barbara

yuanxie@ece.ucsb.edu

Scalable and Energy-Efficient Architecture Lab (SEAL)

Architecture, ISA support, and Software
Toolchain for Neuromorphic Computing in

ReRAM‐Based Main Memory

Emerging
Technologies

3D Integration Emerging NVM

HPC Mobile/Embedded

Computer Architecture Innovations

Technology-Driven Innovations

Application-Driven Innovations

Research Overview

Emerging
Technologies

3D Integration Emerging NVM

Computer Architecture Innovations

Technology-Driven Innovations

Application-Driven Innovations

Research Overview

Brain-inspired Computing

Our brain is a 3D structure with
non-volatile memory capability

Outline

 Introduction and Motivation
 PRIME: Morphable Processing-In-Memory Architecture for NN

computing
 ISCA 2016

 NISA: Instruction Set Architecture for NN Accelerator
 ISCA 2016

 Neutrams: Software Tool Chain for NN Accelerator
 MICRO 2016

 Conclusion

4

Today’s Von Neumann Architecture

On-chip memory
(SRAM)

Off-chip memory
(DRAM)

Secondary Storage
(HDD)

1~30 100~300
Latency:
(Cycles) >5000000

Solid State Disk
(Flash Memory)

25000~2000000

CPU/GPU

Computing Memory/Storage

Challenge:
Bridging the Gap Between Computing and Memory Storage

Overhead of Data Movement

Overhead for Data Movements
 ~200x times more than floating-point computing itself
 Technology improvement does not help

Bill Daily, “The Path to ExaScale”, SC14 Shekhar Borkar, “Exascale Computing—a fact or a fiction?”, IPDPS’13

Today’s NN and DL Acceleration
 Neural network (NN) and deep learning (DL)

 Provide solutions to various applications
 Acceleration requires high memory bandwidth

- PIM is a promising solution

Deng et al, “Reduced-Precision Memory Value
Approximation for Deep Learning”, HPL Report, 2015

• The size of NN increases
• e.g., 1.32GB synaptic

weights for Youtube video
object recognition

• NN acceleration
• GPU, FPGA, ASIC

Today’s Von Neumann Architecture

On-chip memory
(SRAM)

Off-chip memory
(DRAM)

Secondary Storage
(HDD)

1~30 100~300
Latency:
(Cycles) >5000000

Solid State Disk
(Flash Memory)

25000~2000000

CPU/GPU

Computing Memory/Storage

Challenge:
Bridging the Gap Between Computing and Memory Storage

Our brain doesn’t have a distinction
of compute vs. memory

New Architecture:
In-Memory Computing with ReRAM-based Memory

Resistive Random Access Memory (ReRAM)
Data storage: alternatives to DRAM and flash
Computation: matrix-vector multiplication (NN)

9

Hu et al, “Dot-Product Engine (DPE) for Neuromorphic Computing: Programming
1T1M Crossbar to Accelerate Matrix-Vector Multiplication”, DAC’16.

Shafiee et al, “ISAAC: A Convolutional Neural Network Accelerator with In-
Situ Analog Arithmetic in Crossbars”, ISCA’16.

• Use DPE to accelerate pattern
recognition on MNIST

• no accuracy degradation vs. software
approach (99% accuracy) with only 4-
bit DAC and ADC requirement

• 1,000X ~ 10,000X speed-efficiency
product vs. custom digital ASIC

Using ReRAM for Computing

Key idea
PRIME: Process-in-ReRAM main memory
 Based on ReRAM main memory design[1]

[1] C. Xu et al, “Overcoming the challenges of crossbar resistive memory architectures,” in
HPCA’15.

Memristor Basics

11

Top Electrode

Metal Oxide

Bottom Electrode

Voltage

HRS (‘0’)

LRS (‘1’)

SET

RESET

Voltage

Wordline

Cell

(a) Conceptual view
of a ReRAM cell

(b) I-V curve of bipolar
switching

(c) schematic view of a
crossbar architecture

ReRAM Based NN Computation
Require specialized peripheral circuit design

- DAC, ADC etc.

12

(a) An ANN with one input
and one output layer

a1

a2

+ b1
w1,1

w2,1
w1,2

w2,2 + b2

(b) using a ReRAM crossbar
array for neural computation

w1,1

w2,1

w1,2

w2,2

b1 b2

a1

a2

PRIME Architecture Details

• (A) Wordline decoder
and driver with multi-
level voltage sources;

• (B) Column multiplexer
with analog subtraction
and sigmoid circuitry;

• (C) Reconfigurable SA
with counters for multi-
level outputs

• (D) Connection
between the FF and
Buffer subarrays;

Circuit-level Design Details

• (A) Wordline
decoder and driver
with multi-level
voltage sources;

• (B) Column
multiplexer with
analog subtraction
and sigmoid
circuitry;

• (C) Reconfigurable
SA with counters for
multi-level outputs

• (D) Connection
between the FF and
Buffer subarrays;

Evaluation
Comparisons

 Baseline CPU-only, pNPU-co, pNPU-pim

15

[1]

[1] T. Chen et al., “DianNao: A small-footprint high-throughput accelerator for ubiquitous machine-
learning,” in ASPLOS’14.

Performance results

16

 PRIME is even 4x better than pNPU-pim-x64

8.
2

6.
0

4.
0 5.
5 8.
5

1.
7 5.

0

42
.4

33
.3 55

.1 88
.4 14

7.
5

8.
5

45
.3

27
16

21
29 35

27 56
58 94
40

54
5 28

9951
01

58
24

17
66

5

44
04

3

73
23

7

15
96

11
80

2

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

CNN-1 CNN-2 MLP-S MLP-M MLP-L VGG gmean

Sp
ee

du
p

N
or

m
. t

o
C

PU

pNPU-co pNPU-pim-x1 pNPU-pim-x64 PRIME

Energy results

17

 PRIME is even 200x better than pNPU-pim-x64

1.
2

7.
3 9.
4 12
.6 19
.3

16
5.

9

12
.1

1.
8

11
.2 56

.1

79
.0 12
4.

6 18
69

.0

52
.633

5

38
01 11

74
4

23
92

2

32
54

8

13
89

84

10
83

4

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

CNN-1 CNN-2 MLP-S MLP-M MLP-L VGG gmeanEn
er

gy
 S

av
e

N
or

m
. t

o
C

PU

pNPU-co pNPU-pim-x64 PRIME

System-Level Design

Software Perspective
 Programming stage
 Compiling stage
 Execution stage

PIM Architecture

Following RISC ISA design principles

19

Simple and short instructions significantly reduce
design/verification complexity and power/area of the instruction
decoder.

High-level functional blocks

Complex instructions  Short instructions

Lower overhead.



Low-level computational operations

Full connection layer instruction


Matrix/Vector instructions

An overview of NN instructions

NISA defines a total of 43 64-bit scalar/control/vector/ matrix
instructions, and is sufficiently flexible to express all 10 networks.

Code Examples

Code Examples

22

Code Examples
BM code:

// $0: visible vector size, $1: hidden vector size, $2: v-h matrix (W) size
// $3: h-h matrix (L) size, $4: visible vector address, $5: W address
// $6: L address, $7: bias address, $8: hidden vector address
// $9-$17: temp variable address

VLOAD $4, $0, #100 // load visible vector from address (100)
VLOAD $9, $1, #200 // load hidden vector from address (200)
MLOAD $5, $2, #300 // load W matrix from address (300)
MLOAD $6, $3, #400 // load L matrix from address (400)
MMV $10, $1, $5, $4, $0 // Wv
MMV $11, $1, $6, $9, $1 // Lh
VAV $12, $1, $10, $11 // Wv+Lh
VAV $13, $1, $12, $7 // tmp=Wv+Lh+b
VEXP $14, $1, $13 // exp(tmp)
VAS $15, $1, $14, #1 // 1+exp(tmp)
VDV $16, $1, $14, $15 // y=exp(tmp)/(1+exp(tmp))
RV $17, $1 // i, r[i] = random(0,1)
VGT $8, $1, $17, $16 // i, h[i] = (r[i]>y[i])?1:0
VSTORE $8, $1, #500 // store hidden vector to address (500)

A
A

System-Level Design

Software Perspective
 Programming stage
 Compiling stage
 Execution stage

NN Transformation

hardware-independent
representation

NN transformation
Transformation

optimized mapping strategy

configurable and cycle-accurate
simulator

More Details

 "PRIME: A Novel Processing-in-memory Architecture for Neural Network
Computation in ReRAM-based Main Memory", Proceedings of the 43rd
International Symposium on Computer Architecture (ISCA), 2016

 “Cambricon: An Instruction Set Architecture for Neural Networks",
in Proceedings of the 43rd ACM/IEEE International Symposium on
Computer Architecture (ISCA), 2016

 “NEUTRAMS: Neural Network Transformation and Co-design under
Neuromorphic Hardware Constraints”, to appear in Intl. Symp. On
Microarchitecture (MICRO), 2016

http://seal.ece.ucsb.edu

Conclusion

 Neuromorphic computing requires new architecture design
different from conventional Von Neumann architecture

 New architecture requires a rethinking of Instruction Set
Architecture Design to facilitate the software programming and
hardware implementation of the new architecture

 Software toolchains are required to help the transformation of
high-level NN representation to optimize the mapping of the
application to the underlying architecture

 A holistic hardware-software co-design is required for the new
computing paradigm.

28

Thank you!

