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Brain-inspired Computing  

Our brain is a 3D structure with 
non-volatile memory capability



Outline

 Introduction and Motivation
 PRIME: Morphable Processing-In-Memory Architecture for NN 

computing
 ISCA 2016

 NISA: Instruction Set Architecture for NN Accelerator 
 ISCA 2016

 Neutrams: Software Tool Chain for NN Accelerator 
 MICRO 2016

 Conclusion
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Today’s  Von Neumann Architecture

On-chip memory 
(SRAM)

Off-chip memory 
(DRAM)

Secondary Storage 
(HDD)

1~30 100~300
Latency:
(Cycles) >5000000

Solid State Disk 
(Flash Memory)

25000~2000000

CPU/GPU

Computing Memory/Storage

Challenge:
Bridging the Gap Between Computing and Memory Storage



Overhead of Data Movement 

Overhead for Data Movements  
 ~200x times more than floating-point computing itself
 Technology improvement does not help

Bill Daily, “The Path to ExaScale”, SC14 Shekhar Borkar, “Exascale Computing—a fact or a fiction?”, IPDPS’13



Today’s NN and DL Acceleration
 Neural network (NN) and deep learning (DL)

 Provide solutions to various applications
 Acceleration requires high memory bandwidth

- PIM is a promising solution

Deng et al, “Reduced-Precision Memory Value 
Approximation for Deep Learning”, HPL Report, 2015

• The size of NN increases
• e.g., 1.32GB synaptic 

weights for Youtube video 
object recognition

• NN acceleration
• GPU, FPGA, ASIC



Today’s  Von Neumann Architecture

On-chip memory 
(SRAM)

Off-chip memory 
(DRAM)

Secondary Storage 
(HDD)

1~30 100~300
Latency:
(Cycles) >5000000

Solid State Disk 
(Flash Memory)

25000~2000000

CPU/GPU

Computing Memory/Storage

Challenge:
Bridging the Gap Between Computing and Memory Storage

Our brain doesn’t have a distinction 
of compute vs. memory

New Architecture:
In-Memory Computing with ReRAM-based Memory



Resistive Random Access Memory (ReRAM)
Data storage: alternatives to DRAM and flash
Computation: matrix-vector multiplication (NN)
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Hu et al, “Dot-Product Engine (DPE) for Neuromorphic Computing: Programming 
1T1M Crossbar to Accelerate Matrix-Vector Multiplication”, DAC’16.

Shafiee et al, “ISAAC: A Convolutional Neural Network Accelerator with In-
Situ Analog Arithmetic in Crossbars”, ISCA’16.

• Use DPE to accelerate pattern 
recognition on MNIST

• no accuracy degradation vs. software 
approach (99% accuracy) with only 4-
bit DAC and ADC requirement

• 1,000X ~ 10,000X speed-efficiency 
product vs. custom digital ASIC

Using ReRAM for Computing



Key idea
PRIME: Process-in-ReRAM main memory
 Based on ReRAM main memory design[1]

[1] C. Xu et al, “Overcoming the challenges of crossbar resistive memory architectures,” in 
HPCA’15. 



Memristor Basics
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Wordline

Cell

(a) Conceptual view 
of a ReRAM cell

(b) I-V curve of bipolar 
switching

(c) schematic view of a 
crossbar architecture



ReRAM Based NN Computation
Require specialized peripheral circuit design

- DAC, ADC etc.
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(a) An ANN with one input 
and one output layer
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PRIME Architecture Details

• (A) Wordline decoder 
and driver with multi-
level voltage sources; 

• (B) Column multiplexer 
with analog subtraction 
and sigmoid circuitry;

• (C) Reconfigurable SA 
with counters for multi-
level outputs 

• (D) Connection 
between the FF and 
Buffer subarrays; 



Circuit-level Design Details

• (A) Wordline
decoder and driver 
with multi-level 
voltage sources; 

• (B) Column 
multiplexer with 
analog subtraction 
and sigmoid 
circuitry;

• (C) Reconfigurable 
SA with counters for 
multi-level outputs 

• (D) Connection 
between the FF and 
Buffer subarrays; 



Evaluation
Comparisons

 Baseline CPU-only, pNPU-co, pNPU-pim
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[1]

[1] T. Chen et al., “DianNao: A small-footprint high-throughput accelerator for ubiquitous machine-
learning,” in ASPLOS’14.



Performance results
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 PRIME is even 4x better than pNPU-pim-x64
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Energy results
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 PRIME is even 200x better than pNPU-pim-x64

1.
2

7.
3 9.
4 12
.6 19
.3

16
5.

9

12
.1

1.
8

11
.2 56

.1

79
.0 12
4.

6 18
69

.0

52
.633

5

38
01 11

74
4

23
92

2

32
54

8

13
89

84

10
83

4

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

CNN-1 CNN-2 MLP-S MLP-M MLP-L VGG gmeanEn
er

gy
 S

av
e 

N
or

m
. t

o 
C

PU

pNPU-co pNPU-pim-x64 PRIME



System-Level Design

Software Perspective
 Programming stage
 Compiling stage
 Execution stage

PIM Architecture



Following RISC ISA design principles
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Simple and short instructions significantly reduce 
design/verification  complexity and power/area of the instruction 
decoder.

High-level functional blocks

Complex instructions  Short instructions

Lower overhead.



Low-level computational operations

Full connection layer instruction


Matrix/Vector instructions 



An overview of NN instructions

NISA defines a total of 43 64-bit scalar/control/vector/ matrix 
instructions, and is sufficiently flexible to express all 10 networks.



Code Examples



Code Examples
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Code Examples
BM code:

// $0: visible vector size, $1: hidden vector size, $2: v-h matrix (W) size
//  $3: h-h matrix (L) size, $4: visible vector address, $5: W address
//  $6: L address, $7: bias address, $8: hidden vector address
//  $9-$17: temp variable address 

VLOAD $4, $0, #100 // load visible vector from address (100)
VLOAD $9, $1, #200 // load hidden vector from address (200)
MLOAD $5, $2, #300 // load W matrix from address (300)
MLOAD $6, $3, #400 // load L matrix from address (400)
MMV $10, $1, $5, $4, $0 // Wv
MMV $11, $1, $6, $9, $1 // Lh
VAV $12, $1, $10, $11 // Wv+Lh
VAV $13, $1, $12, $7 // tmp=Wv+Lh+b
VEXP $14, $1, $13 // exp(tmp)
VAS $15, $1, $14, #1 // 1+exp(tmp)
VDV $16, $1, $14, $15 // y=exp(tmp)/(1+exp(tmp))
RV $17, $1 //     i, r[i] = random(0,1)
VGT            $8, $1, $17, $16 // i, h[i] = (r[i]>y[i])?1:0
VSTORE $8, $1, #500 // store hidden vector to address (500)

A
A



System-Level Design

Software Perspective
 Programming stage
 Compiling stage
 Execution stage



NN Transformation

hardware-independent 
representation 

NN transformation 
Transformation

optimized mapping strategy

configurable and cycle-accurate 
simulator



More Details

 "PRIME: A Novel Processing-in-memory Architecture for Neural Network 
Computation in ReRAM-based Main Memory",  Proceedings of the 43rd 
International Symposium on Computer Architecture (ISCA), 2016 

 “Cambricon: An Instruction Set Architecture for Neural Networks", 
in Proceedings of the 43rd ACM/IEEE International Symposium on 
Computer Architecture (ISCA), 2016

 “NEUTRAMS: Neural Network Transformation and Co-design under 
Neuromorphic Hardware Constraints”, to appear in Intl. Symp. On 
Microarchitecture (MICRO), 2016

http://seal.ece.ucsb.edu



Conclusion

 Neuromorphic computing requires new architecture design 
different from conventional Von Neumann architecture

 New architecture requires a rethinking of Instruction Set 
Architecture Design to facilitate the software programming and 
hardware implementation of the new architecture

 Software toolchains are required to help the transformation of 
high-level NN representation to optimize the mapping of the 
application to the underlying architecture

 A holistic hardware-software co-design is required for the new 
computing paradigm.
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Thank you!




