

Architecture, ISA support, and Software Toolchain for Neuromorphic Computing in ReRAM-Based Main Memory

Yuan Xie

University of California, Santa Barbara

yuanxie@ece.ucsb.edu

Research Overview

Research Overview

Brain-inspired Computing

Application-Driven Innovations

Our brain is a 3D structure with non-volatile memory capability

Technology-Driven Innovations

Emerging Technologies

Emerging NVM

Outline

- Introduction and Motivation
- PRIME: Morphable Processing-In-Memory Architecture for NN computing
 - ISCA 2016
- **NISA:** Instruction Set Architecture for NN Accelerator
 - ISCA 2016
- Neutrams: Software Tool Chain for NN Accelerator
 - MICRO 2016
- Conclusion

Today's Von Neumann Architecture

Challenge:

Bridging the Gap Between Computing and Memory Storage

Overhead of Data Movement

Overhead for Data Movements

- ~200x times more than floating-point computing itself
- Technology improvement does not help

Bill Daily, "The Path to ExaScale", SC14

Shekhar Borkar, "Exascale Computing—a fact or a fiction?", IPDPS'13

Today's NN and DL Acceleration

Neural network (NN) and deep learning (DL)

- Provide solutions to various applications
- Acceleration requires high memory bandwidth
 - PIM is a promising solution

Deng *et al*, "Reduced-Precision Memory Value Approximation for Deep Learning", HPL Report, 2015

- The size of NN increases
 - e.g., 1.32GB synaptic weights for Youtube video object recognition
- NN acceleration
 - GPU, FPGA, ASIC

Today's Von Neumann Architecture

Our brain doesn't have a distinction of compute vs. memory

New Architecture:

In-Memory Computing with ReRAM-based Memory

Using ReRAM for Computing

Resistive Random Access Memory (ReRAM)

- Data storage: alternatives to DRAM and flash
- Computation: matrix-vector multiplication (NN)

Hu et al, "Dot-Product Engine (DPE) for Neuromorphic Computing: Programming 1T1M Crossbar to Accelerate Matrix-Vector Multiplication", DAC'16.

4x4 crossbar array

- Use DPE to accelerate pattern recognition on MNIST
 - no accuracy degradation vs. software approach (99% accuracy) with only 4bit DAC and ADC requirement
 - 1,000X ~ 10,000X speed-efficiency product vs. custom digital ASIC

Shafiee et al, "ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars", ISCA'16.

Key idea

PRIME: Process-in-ReRAM main memory

Based on ReRAM main memory design^[1]

[1] C. Xu *et al*, "Overcoming the challenges of crossbar resistive memory architectures," in HPCA'15.

Memristor Basics

ReRAM Based NN Computation

Require specialized peripheral circuit design

- DAC, ADC etc.

$$b_j = \boldsymbol{\sigma}(\sum_{\forall i} a_i \cdot w_{i,j})$$

(a) An ANN with one input and one output layer (b) using a ReRAM crossbar array for neural computation

PRIME Architecture Details

- (A) Wordline decoder and driver with multilevel voltage sources;
- (B) Column multiplexer with analog subtraction and sigmoid circuitry;
- (C) Reconfigurable SA with counters for multilevel outputs
- (D) Connection between the FF and Buffer subarrays;

Circuit-level Design Details

(A) Wordlinedecoder and driverwith multi-levelvoltage sources;

(B) Column multiplexer with analog subtraction and sigmoid circuitry;

(C) Reconfigurable SA with counters for multi-level outputs

(D) Connection between the FF and Buffer subarrays;

Evaluation

Comparisons

Baseline CPU-only, pNPU-co, pNPU-pim

Configurations of CPU and Memory.

_	-
Processor	4 cores; 3GHz; Out-of-order
L1 I&D cache	Private; 32KB; 4-way; 2 cycles access;
L2 cache	Private; 2MB; 8-way; 10 cycles access;
ReRAM-based Main Memory	16GB ReRAM; 533MHz IO bus; 8 chips/rank; 8 banks/chip; tRCD-tCL-tRP-tWR 22.5-9.8-0.5-41.4 (ns)

The Configurations of Comparatives.

Description		Data path	Buffer
nNDU oo	Parallel NPU as co-processor,	16x16 multiplier,	2KB in/out
phPU-co	similar to DianNao ^[1]	256-1 adder tree	32KB weight
pNPU-pim	PIM version of the parallel NI	PU, 3D stacked to	each bank

[1] T. Chen et al., "DianNao: A small-footprint high-throughput accelerator for ubiquitous machine-learning," in ASPLOS'14.

Performance results

PRIME is even 4x better than pNPU-pim-x64

Energy results

PRIME is even 200x better than pNPU-pim-x64

System-Level Design

PIM Architecture

Following RISC ISA design principles

Complex instructions → Short instructions

High-level functional blocks Full connection layer instruction ↓ ↓ Low-level computational operations Matrix/Vector instructions

Lower overhead.

Simple and short instructions significantly reduce design/verification complexity and power/area of the instruction decoder.

An overview of NN instructions

Instruction Type		Examples	Operands	
Control		jump, conditional branch	register (scalar value), immediate	
	Matrix	matrix load/store/move	register (matrix address/size, scalar value), immediate	
Data Transfer	Vector	vector load/store/move	register (vector address/size, scalar value), immediate	
	Scalar	scalar load/store/move	register (scalar value), immediate	
	Matrix	matrix multiply vector, vector multiply matrix, matrix multiply scalar, outer product, matrix add matrix, matrix subtract matrix	register (matrix/vector address/size, s- calar value)	
Computational	Vector	vector elementary arithmetics (add, subtract, multiply, divide), vector transcendental functions (exponential, logarithmic), dot product, random vector generator, maximum/minimum of a vector	register (vector address/size, scalar value)	
	Scalar	scalar elementary arithmetics, scalar transcendental functions	register (scalar value), immediate	
Logical	Vector	vector compare (greater than, equal), vector logical operations (and, or, inverter), vector greater than merge	register (vector address/size, scalar)	
	Scalar	scalar compare, scalar logical operations	register (scalar), immediate	

NISA defines a total of 43 64-bit scalar/control/vector/ matrix instructions, and is sufficiently flexible to express all 10 networks.

Code Examples

MLP code:

- // \$0: input size, \$1: output size, \$2: matrix size
- // \$3: input address, \$4: weight address
- // \$5: bias address, \$6: output address
- // \$7-\$10: temp variable address

VLOAD	\$3, \$0, #100	<pre>// load input vector from address (100)</pre>
MLOAD	\$4, \$2 <i>,</i> #300	<pre>// load weight matrix from address (300)</pre>
MMV	\$7, \$1, \$4, \$3, \$0	// W x
VAV	\$8, \$1, \$7, \$5	// tmp=Wx+b
VEXP	\$9, \$1, \$8	// exp(tmp)
VAS	\$10, \$1, \$9, #1	// 1+exp(tmp)
VDV	\$6, \$1, \$9, \$10	// y =exp(tmp)/(1+exp(tmp))
VSTORE	\$6 <i>,</i> \$1, #200	<pre>// store output vector to address (200)</pre>

Code Examples

Pooling code:

- // \$0: feature map size, \$1: input data size,
- // \$2: output data size, \$3: pooling window size 1
- // \$4: x-axis loop num, \$5: y-axis loop num
- // \$6: input addr, \$7: output addr
- // \$8: y-axis stride of input

VLOAD	\$6. \$1. #100	// load input neurons from address (100)
SMOVE	\$5, \$3	// init y
LO: SMOVE	\$4, \$3	// init x
L1: VGTM	\$7, \$0, \$6, \$7	
// ∀ featu	re map m, output	t[m]=(input[x][y][m]>output[m])?
//		input[x][y][m]:output[m]
SADD	\$6, \$6, \$0	<pre>// update input address</pre>
SADD	\$4, \$4, #-1	// x
СВ	#L1, \$4	// if(x>0) goto L1
SADD	\$6, \$6, \$8	<pre>// update input address</pre>
SADD	\$5 <i>,</i> \$5 <i>,</i> #-1	// y
СВ	#LO, \$5	// if(y>0) goto L0
VSTORE	\$7 <i>,</i> \$2 <i>,</i> #200	// stroe output neurons to address2200)

Code Examples

BM code:

- // \$0: visible vector size, \$1: hidden vector size, \$2: v-h matrix (W) size
- // \$3: h-h matrix (L) size, \$4: visible vector address, \$5: W address
- // \$6: L address, \$7: bias address, \$8: hidden vector address
- // \$9-\$17: temp variable address

<pre>// load visible vector from address (100)</pre>
<pre>// load hidden vector from address (200)</pre>
// load W matrix from address (300)
// load L matrix from address (400)
// W v
// L h
// W v +L h
// tmp=Wv+Lh+b
// exp(tmp)
// 1+exp(tmp)
// y=exp(tmp)/(1+exp(tmp))
// ∀i, r[i] = random(0,1)
// ∀i, h[i] = (r[i]>y[i])?1:0
<pre>// store hidden vector to address (500)</pre>

System-Level Design

Execution stage

NN Transformation

More Details

- PRIME: A Novel Processing-in-memory Architecture for Neural Network Computation in ReRAM-based Main Memory", Proceedings of the 43rd International Symposium on Computer Architecture (ISCA), 2016
- Cambricon: An Instruction Set Architecture for Neural Networks", in Proceedings of the 43rd ACM/IEEE International Symposium on Computer Architecture (ISCA), 2016
- *NEUTRAMS: Neural Network Transformation and Co-design under Neuromorphic Hardware Constraints", to appear in Intl. Symp. On Microarchitecture (MICRO), 2016
- http://seal.ece.ucsb.edu

Conclusion

- Neuromorphic computing requires new architecture design different from conventional Von Neumann architecture
- New architecture requires a rethinking of Instruction Set Architecture Design to facilitate the software programming and hardware implementation of the new architecture
- Software toolchains are required to help the transformation of high-level NN representation to optimize the mapping of the application to the underlying architecture
- A holistic hardware-software co-design is required for the new computing paradigm.

Thank you!