
You Could Speed up Your Program by 
Using a Vector Processor. 

Yuichi Nakamura
General Manager of System Platform Research Laboratories
NEC Corp.



2 © NEC Corporation 2016

Computing Trend

more transistors != higher performancemore transistors != higher performance

Single core performance
already hit a peak

Limit of Moor's low

http://www.gotw.ca/publications/concurrency-ddj.htm

Single-core(increasing Hz)

Multicore/Manycore
(increasing # of cores)

Hetero Computing
(use of accelerators)

Power wall

Limit of Moor's law: 

Dark Silicon

http://www.nvidia.com/object/io_1238654717841.html
http://newsroom.intel.com/docs/DOC-3126



3 © NEC Corporation 2016

Hetero Computing

Hetero of general-purpose Neumann and high efficient 
non Neumann approaches brain level performance
Hetero of general-purpose Neumann and high efficient 
non Neumann approaches brain level performance

CPU
(Xeon)

1GHz

2GHz

~4GHz

CC
CC

CC

CC CC
CC CC

Limit of Moor's law →

2core
4core

CPU+GPGPU

CPU+Manycore

Neumann NeumannNeumann＋Neumann
Hetero

with memory access

2005 2010 time

Perfor
mance

ClusterCluster

CC MM

CPU+FPGA

CPU+Vector
CC GG CC VV

CC FF

CC CC

per two years
Double cores
per two years

Hetero

Homo

Super
Distributed

with register data transfer

Neumann＋
non Neumann Hetero
with register data transfer

Wall of dark silicon →
(Total power limit
in a chip)

CC
MM

AA
GG

FF

: CPU
: Manycore
: GPGPU
: Aurora
: FPGA

Wall of Neumann



4 © NEC Corporation 2016

How to Design Hetero Computing

▌Select the best processing engine (accelerator) 
for the target application.
 The most important thing is to know the advantages and the 

disadvantages of the processing engines. 
The length of thread, the length of data size, the kind of 

processing, and etc. 
How to implement the application to the processing engine
▌Combine the selected processing engines
(not presented today)
Communication architecture
Scheduling



5 © NEC Corporation 2016

Serial 
processing of 
modest data

Selection of optimal processing engines according to 
target applications

Core
performance

Vector
engines

CPU
(Xeon)

Dedicated 
LSI
(FPGA, 

ASIC)

Number of 
cores

100 cores

50 cores

10 cores

Machine learning
Matrix computation
Simulation
Concurrent control

>1000
processing units

Micro servers
(Atom/ARM)

General-purpose
I/O bottleneck

100Gops1Gops100Mops 10Gops

Collective 
processing of 
huge data

Automated financial transaction

Next-generation codec
(HEVC)

Face detection

Calculation
specific

Massively
stored data

Many-core
(Intel Xeon 
Phi, GPGPU)

Video analysis
Surveillance video
Video search

Feature matching
Biometrics
Gene search

Delivery system
Video codec

DNA/numerical analysis
Drug discovery, genes

Device
embedded

Atom/ARM 
servers

Web servers

Streaming events
Automated financial
transaction
Packet analysis

Ultra real-time
Video processing

The selection of processing engines according to the 
required processing characteristics shall be optimized 
to further enhance the computing performance

The selection of processing engines according to the 
required processing characteristics shall be optimized 
to further enhance the computing performance



6 © NEC Corporation 2016

Hetero Computing

▌Combined use of multiple types of engines for higher 
performance beyond limitation (performance and power 
consumption) of homogeneous computing

▌Engines for hetero computing
von Neumann Architecture

• CPU
• GPU
• Manycore
• Vector Processor
non von Neumann 

Architecture
• FPGA



7 © NEC Corporation 2016

Software View of von Neumann Architecture

▌CPU/GPGPU/Manycore/Vector：Serial program is divided to 
fit the processing units

Serial
Program

..........

........

..........

............

..........

.......

...

......

............

..........

....

..........

....

Processor
Vector

ProcessorCPU Manycore
GPGPU・
Manycore

Some 
Complex

Many 
Simple

Image
ProcessingBiometrics

DB

Transaction Processing

..........

........

..........

............

..........

.......

...

......

............

..........

....

..........

....

..........

....

Parallel
Processing

...........

........

........

.........

.........

......

.............

..........

........

..........

..........

........

..........

............

..........

.......

...

......

............

..........

....

..........

....

..........

....

iterations 
are 
processed 
in parallel

.........

.........

.........

.........

.........

.........

loop
iterations

..........

........

..........

............

..........

.......

...

......

............

..........

....

..........

....

..........

....

..........

.....

...........

........

............

.....

.............

...........

...........

........

............

.....

.............

...........

Parallel
Processing

Size of a core＝Program complexity

Physics Simulation
(Matrix operation)

Selection of the best engine
for higher application performance



8 © NEC Corporation 2016

t

SW view of non von Neumann architecture
▌FPGA：flexible processing unit  difficult to use
MS, JP-Morgan, and Baidu use FPGA for bigdata processing and machine 

learning

Serial
Program

FPGA

..........

........

..........

............

..........

.......

...

......

............

..........

....

..........

....

..........

....

..........

.....

Performance depends on 
a pattern of division
 Difficult to design

Multiple
patterns

of division

Area: Large
Power: High
Speed: High

Area: Small
Power: Low
Speed: Low

Parallel
Processing

Parallel
Processing

...........

........

............

...........

........

............

.........

........

...........

........

..

...........

...........

...........

...........

........

............

.......

............

.......

............

.......

..........

........

..........

....

..........

t



9 © NEC Corporation 2016

Combination of  Processing Engines
▌Social system is consisted of various applications.
▌Each processing engine  has an advantage and disadvantage 
according to application/task/process/function.

▌One engine cannot solve the problem.
▌Use the best processing engine and combine them.

Xeon Server

Xeon Server

GPGPU/Phi

FPGA

Each engine has an 
advantage and an 
disadvantage 

Xeon Server

GPGPU/Phi

FPGA

Many
Core

FPGA

Tasks allocate the best 
accelerators/Engine

Real time Constraint
100X faster than a single server

Social System
Control Collecting Analysis Control

Example:
Video severance



10 © NEC Corporation 2016

Processing Engine Pool for Hetero Combination

The performance is maximized by optimizing the combination of 
heterogeneous processing engines with software technologies to 
achieve the required processing capability at low cost.

The performance is maximized by optimizing the combination of 
heterogeneous processing engines with software technologies to 
achieve the required processing capability at low cost.

Processing
engines

Process A Process B Process C

Engine-leveraging
SW technologies

FPGA Many-core Vector

Scheduling
(resource management)

Application optimization 
for various processing 
engines

構成制
御

Flexible system 
configuration 
technologies
System 
configuration 
management

Network 
flow/bandwidth 
management

Applications suitable forApplications suitable for
many-core processors

Applications suitable for
FPGA

Applications suitable for
vector processors

Processing engine pool

Selecting optimal
engines



11 © NEC Corporation 2016

Serial 
processing of 
modest data

Vector Processor

NEC is developing vector processor for super computer 
over 30 years for continuous needs of HPC from 
industries

NEC is developing vector processor for super computer 
over 30 years for continuous needs of HPC from 
industries

Core
performance

Vector
engines

Xeon

Dedicated 
LSI (FPGA, 
ASIC)

Number of 
cores

100 cores

50 cores

10 cores Concurrent control

Machine learning
Matrix 
computation
Simulation
Concurrent control

>1000
processing units

Micro servers
(Atom/ARM)

General-purpose
I/O bottleneck

100Gops1Gops100Mops 10Gops

Collective 
processing 
of huge 
data

Automated financial transaction

Next-generation codec
(HEVC)

Face detection

Calculation 
specific
Massively 
stored data

Many-core
(Intel Xeon 
Phi, GPGPU)

o
Video analysis

Surveillance video
Video search

Feature matching
Biometrics
Gene search

Drug discovery, 
genes

Delivery system
Video codec

DNA/numerical
analysis

Drug discovery, 
genes

Device 
embedded

Atom/ARM 
servers

Web servers

nsaction
Streaming events

Automated financial transaction
Packet analysis

Ultra real-time
Video processing

use



12 © NEC Corporation 2016

MPI support 
to Multilane IXS

History and Technical Evolutions of Super Computer
Pe

rf
or

m
an

ce

1990 2000 2010
SX-2

SX-3

SX-4

SX-5
SX-6

SX-8/8R

SX-9

Bipolar
Water Cooling

Multi node
CMOS

Air Cooling

1 Chip
Vector Processor

3D node
module

Multi-core
All in One Chip

ECO 

SX-7
100GF

Processor

NEC has always provided the high sustained 
performance by Vector Super-Computer SX series.

ES2

Distributed Parallelization
(MPI-SX)

Support 
Over 100 nodes

Cluster

Support >1000 nodes
ECO

Auto Vectorization
Compiler

Automatic Parallelization
Function & 
SUPER-UX

World No.1 Super Computer
(Top500 2002~2004)

Gordon Bell Award
(2002)

ES



13 © NEC Corporation 2016

Vector Processor

Scalar

Vector is efficient to fill pipelines and to hide latencies

SIMD
(Modern Scalar)

Vector(SX)
256 elements
are processed
per instruction

Register Pipeline Result

256 256



14 © NEC Corporation 2016

Required Byte/Flop in Real Applications

According to Japanese Government (MEXT) working group report for a wide 
variety of strategic segment applications, diverse characteristics are observed.

MEXT: Ministry of Education, Culture, Sports, Science & Technology

B/F requirement from each application differs greatly.
Any single architecture cannot cover all application areas.

0.001 0.01 0.1 1 10 100 1000
0.0001

0.001

0.01

0.1

1

10

Required memory capacity [PB]R
eq

ui
re

d 
m

em
or

y 
ba

nd
w

id
th

 [B
yt

e/
Fl

op
]

Computation
intensive

Memory
intensive

Reference: “Report on Strategic Direction/Development of HPC 
in Japan”, March 2012 

Structural analysis
Fluid dynamics

MD, Weather
Cosmo physics
Particle physics

Quantum chemistry
Nuclear physics

scalar
CPUs

(vector
processor)



15 © NEC Corporation 2016

Processor Overview(SX-ACE)

core core core

RCU

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

crossbar

ADB
(Assignable Data Buffer)

SPU VPU

256GB/s

256GB/s

256GB/s

256GB/s

8GB/s x2

8GB/s x2

Memory(DDR3)

Interconnect

CORE
Architecture Vector
Clock Frequency 1.0GHz
SPU decode rate 4 instructions

VPU Performance 64GFlops
ADB size 1MB
ADB bandwidth 256GB/s
Memory bandwidth 64GB/s~

256GB/s
Core Byte/Flop 1.0 ~ 4.0
CPU
Cores 4
Performance 256GFlops
Memory bandwidth 256GB/s
CPU Byte/Flop 1.0
Memory capacity 64GB

Vector Processing Unit
Scalar Processing Unit

Remote access Control Unit

Memory controller



16 © NEC Corporation 2016

Single Core Comparison

The SX-ACE core can provide the world top-level performance 
and the largest memory bandwidth
The SX-ACE core can provide the world top-level performance 
and the largest memory bandwidth



17 © NEC Corporation 2016

Bigdata Processing with Vector Processor
▌Vector processor has a great advantage to process streaming huge 

data continuously. 
▌Bigdata which collects many terminals, consists of “streaming huge 

data”.
All data unit are applied the similar processing. 

▌We confirmed our vector processor can achieve significant speed 
up compared with CPUs or Many core processors,  on several 
bigdata processing. 

Water supply management

CPU

M
any-

core

Processing
performance

Vector

1

13020

More than 100x performance
by using vector

Sensor
SensorSensor

Sensor

Sensor

Sensor
ActuatorSensor

IoT/Smart Meter/Lights/Sensors/Actuator

Bigdata processing

256 256

Streaming huge data
at once

Memory intensive
Vector Processor



18 © NEC Corporation 2016

Vector Processing for Bigdata (1/2)

▌Recently, machine learning (ML) is becoming important in 
Big Data analytics

▌Most ML algorithms can be written as “matrix operation”, 
which can be executed efficiently with vector architecture

▌Especially, large scale ML tends to use “sparse matrix”, 
which vector architecture is very good at
e.g. sparse matrix vector multiplication (SpMV)

Sparse
Matrix × ＝

de
ns

e 
ve

ct
or

de
ns

e 
ve

ct
or



19 © NEC Corporation 2016

Vector Processing for Bigdata (2/2)

▌On the other hand, users in Big Data field are not 
accustomed to low layer programming like MPI
Use middleware like “Spark”
Spark is written in Scala that runs on Java Virtual Machine; 

it is difficult to execute it on vector architecture efficiently

▌We prototyped a middleware that runs on “Vector Processor#
Provides interface like Spark

▌We did preliminary evaluation using an ML algorithm
Showed its effectiveness by the evaluation on “Vector Processor”



20 © NEC Corporation 2016

Example of ML Algorithm (1/3): Recommender System

▌Create a matrix: rating (e.g. purchase) of item j by user i
Sparse matrix

▌Estimate evaluation value that is not evaluated yet;
recommend item of high evaluation value

▌Approximate the matrix as mult. of smaller dense matrixes
e.g. Singular Value Decomposition (SVD)

×≒i

j

ji

Can be inferred by 
multiplication

User “i” has not 
rated item “j” yet

Us
er

Item

Ratings



21 © NEC Corporation 2016

Example of ML (2/3): Prediction of CTR (click through rate)

▌Predict if advertisement will be clicked or not by history data
Use the history as training data
Algorithm: logistic regression, support vector machine, etc.

▌Training data
e.g. URL, referrer URL, banner size, category, user info, etc.
Convert them into matrix for the input of ML algorithm

▌Example of conversion: one-hot encoding
In the case of URL, each URL are assigned to different dimension
Sparse matrix 

yahoo google Bing Baidu hatena …
1

1
1



22 © NEC Corporation 2016

Example of ML (3/3): Document Analysis

▌Typically document-term matrix is created
column: word, row: document, value: number of occurrence
Sparse matrix

▌Various operations on this matrix:
Clustering: gather similar document (e.g. K-means)
Topic analysis: analyze “topic” of this document (e.g. LSA, LDA)

•LSA (Latent Semantic Analysis) can be implemented by singular value 
decomposition (SVD) of the matrix

this is a pen
this is a pen I am boy
1 1 1 1

1 1 1 1
…

I am a boy



23 © NEC Corporation 2016

Optimization of SpMV for ML (1/5)

▌As stated before, large scale ML tends to use sparse matrix
SpMV often becomes the kernel operation of sparse matrix

▌Here, sparse matrix of ML typically follows “power law”
e.g. document-term matrix

•column: word, row: document, value: number of occurrence
•some words (e.g. “a”) appears much more frequently than 
others

this is a pen
this is a pen I am student
1 1 1 1

1 1 1 1
…

I am a student

Need for optimized SpMV for such matrix
#

 o
f o

cc
ur

re
nc

e

word id



24 © NEC Corporation 2016

Optimization of SpMV for ML (2/5)

▌Existing matrix format (1): Compressed Row Storage (CRS)
store the non-zero elements contiguously in row major order
“column index” and “offset” of each row is also stored

SpMV can be implemented using dot-product

1 2 3
4 5

6 7 8
9 10

1 2 3 4 5 6 7 8 9 10

0 2 4 1 3 0 1 6 4 5

0 3 5 8 10

1 2 3
4 6

6 7 8
9 10

1
2
3
4
5
6
7

22
…× ＝

Vector length is limited by 
the number of non-zeros 
of each row

col_idx: 0 col_idx: 2

: value

: offset

: col idx



25 © NEC Corporation 2016

Optimization of SpMV for ML (3/5)

▌Existing matrix format (2): Jagged Diagonal Storage (JDS)
shift the non-zeros to the left
sort rows by the num. of non-zero; store them in col. major order

SpMV is implemented by adding to the result vector

1 2 3
4 5
6 7 8
9 10

1 2 3
4 5

6 7 8
9 10

1 2 3
6 7 8
4 5
9 10

1 2 3
6 7 8
4 5
9 10

1
2
3
4
5
6
7

+=1
+=6
+=8
+=45

× ＝

Order of the result will 
be adjusted later

Vector length becomes 
much longer than CRS



26 © NEC Corporation 2016

Optimization of SpMV for ML (4/5)

▌Problem of JDS
If the distribution of non-zeros follows “power law”, 

many columns becomes shorter than vector register length

many columns whose 
length are short

vector register length



27 © NEC Corporation 2016

Optimization of SpMV for ML (5/5)

▌Solution: use the combination of both formats
use CRS format where column length are short

JDS CRS

vector register length



28 © NEC Corporation 2016

Evaluation: Evaluation Environment

▌Evaluated on Xeon and SX-ACE
Xeon cluster (E5-2630v3)

•8 cores/socket, 2 sockets/node
•10Gbit Ethernet
•Evaluated using Feliss and Spark

▌Evaluated only computation time
without I/O time

= 8 cores

2 sockets
10GbE = 4 cores

Xeon cluster SX-ACE

SX-ACE
•4 cores/socket, 1 socket/node
•8GB/s network (bidirectional)
•Evaluated using Feliss



29 © NEC Corporation 2016

Evaluation: Singular Value Decomposition (1/2)

▌Evaluation setup
Data: English Wikipedia document
Top 100 singular values/vectors are calculated
Corresponds to LSA

▌Implementation
Utilized Parallel ARPACK

•requires user-defined SpMV
Connected with our SpMV implementation

•SpMV takes most of the time

4.8M

4.1M

680M items
（10GB）

Wikipedia

A
Parallel
ARPACKA v××v′ :=

Communication takes place 
in both Parallel ARPACK and SpMV



30 © NEC Corporation 2016

▌Compared at the same number of cores,
Vector on SX is 6.8 ~ 14x faster than Feliss on Xeon

Evaluation: Singular Value Decomposition (2/2)

Feliss is our customized Spark for multi-processing 



31 © NEC Corporation 2016

Evaluation: Logistic Regression (1/2)

▌Evaluation setup
Data: CTR data provided by Criteo
Used “Gradient Descent” algorithm

•Number of iteration = 100

▌Implementation
Divide and distribute the matrix
Locally update the result using two SpMVs and a function (F)
Reduce the result and broadcast 

45.8M

33.7M

1787M items
（27GB）

Criteo CTR

A A v××v′ := F

…
…

reducev′′

broadcast



32 © NEC Corporation 2016

Evaluation: Logistic Regression (2/2)

▌Compared at the same number of cores,
Vector on SX is 5.2 ~ 12x faster than Feliss on Xeon
Scalability would be improved by using larger data



33 © NEC Corporation 2016

Evaluation: K-means (1/2)

▌Evaluation setup
Data: English Wikipedia document
Number of clusters: 30

•Number of iteration = 50
▌Implementation
Divide and distribute the matrix
Locally assign the data to the closest centroid (= center of cluster)

•SpMV can be used to calc the distance
•Distances to all centroids can be calculated at the same time (⇒ SpMM)
Gathering the sum (and num) of the assigned data and create new 

centroids by averaging them

4.8M

4.1M

680M items
（10GB）

Wikipedia

A ×calc_distance

…
…

reduce

broadcast
sum/num of
data assigned to 
each centroids

c

c’



34 © NEC Corporation 2016

Evaluation: K-means (2/2)

▌Compared at the same number of cores,
Feliss on SX is 3.4 ~ 5.4x faster than Feliss on Xeon
Scalability would be improved by using larger data



35 © NEC Corporation 2016

Conclusion

▌To enhance computing speed under the limit of Mooreʼ Law,
Hetero computing is very important

▌Vector processor is one of good accelerators in Hetero 
Computing

▌We showed that users can easily write distributed programs 
on V without using MPI

▌We showed effectiveness of a bigdata processing and Vector 
over Xeon using an ML algorithm




