TrueNorth : A Neurosynaptic Integrated Circuit with 1 Million Spiking Digital Neurons

Yutaka Nakamura

IBM Research - Tokyo

Acknowledgement

IBM Cognitive Computing Team and Dharmendra Modha

Cornell University

DARPA (This talk does not represent their view....)

And many other universities and government agencies.

Explosive Growth of Unstructured Data

40 Zettabytes

2020

Reality of Today's VLSI Field

- Clock is not getting faster.
- Instruction level parallelism does not improve.
- Operation voltage does not go down.
- Leakage current is increasing.
- Cost per transistor is not getting cheaper.

We need a new paradigm.

Neural Network Resurgence

- Deep Belief Network: many layer network outperforms conventional networks.
- There is a strong resurgence of interest in neural networks in the community.

From Hinton 2006

Biological Inspiration \rightarrow What Neurons Do

Neuron integrates inputs received on dendrites

 Launches an electrical pulse - "spike" - down axon when a threshold is reached

How It Works: "neurons", "synapses", "axons", "dendrites"

C-element : State Device for Asynchronous Circuit

CMOS circuit

Asynchronous Circuit Properties

- Circuit works in an event-driven fashion. No system clock.
- When there is no task to be performed, the circuit goes totally quiet.

TrueNorth Chip Layout

240u

Data Movement over Chip Layout

TrueNorth's Numbers

- Transistor Count: 5.4 Billion Transistors
- Die Area: 4.3 cm²
- Cores: 4096
- Neuron Count: 1Million
- Synapse Count: 256 Million
- On Chip Memory: 428Mbits
- Event Trigger (Tick) : 1KHz

Photo: Deanne FitzMaurice for Science 2014

Power Consumption: 72mW (at a operation point of average 20Hz neuron firing, 50% synaptic connectivity, 0.775V supply)

Truenorth

Low-power FPGA

Clock Oscillator

Simulator Hardware Equivalence

Corelet Programming

Corelet Programming

Recognition System

TrueNorth Space

.......

Heli Video Recognition with a single TrueNorth chip

Logo 32 Demo

Logo32 Real-time

NS1e Single Chip Evaluation Board

Low Power Low Weight Miniature Form Real Time User Friendly

NS16e Board

- 4x4 grid of TrueNorth communicating with a built-in interface.
- PCIe connecter to the host machine.

TrueNorth Scaling Possibility

96 Rack Cluster40 kW (chip power only)100 trillion synapsesHuman Scale

4096 Chip Rack400W (chip power only)1 trillion synapsesCat Scale

TrueNorth Training Boot Camp

- We are trying to work with government agencies, universities, and other companies.
- In summer 2015, we invited 50+ collaborators to IBM and 3 week Bootcamp.
- Bootcamp alumni are already providing us enormous feedback.
- We expect to have another Bootcamp some time in near future.

- A million spiking-neuron integrated circuit with a scalable communication network and interface", Science 2014 Aug.
- "Real-time Scalable Cortical Computing at 46 Giga-Synaptic OPS/Watt with ~100x Speedup in Time-to-Solution and ~100,000x Reduction in Energy-to-Solution", SC 2014 Nov.
- "TrueNorth Design and Tool Flow of a 65mW 1 Million Neuron Programmable Neurosynaptic Chip", TCAD 2015 Oct.