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SENSING AND PERCEPTION REQUIREMENTS 
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Functions such as segmentation of point cloud 

lidar data, image processing with deep learning 

and sensor fusion require increased performance 

Micro-controllers for device drivers 

CPUs for high-level processing 

GPUs for machine learning 

DSPs for mid-level processing 

FPGAs for pre-processing  
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IDEAL PLATFORM FOR PERCEPTION 

According to the Autoware1 project leader (Cool Chips 2015, 

Japan), an ideal platform for perception would be a processor 

with multiple CPU-type cores, where one single core could be 

dedicated to each simple task, while compute-intensive tasks 

would be executed in parallel over several cores. 
 

This platform must be complemented by reconfigurable or 

dedicated hardware for low-level sensor data processing 

1 Open-source software for urban autonomous driving, https://github.com/CPFL/Autoware 



MULTICORE MEMORY HIERARCHY 

Classic Multicore  Challenge 

- Managing interference between cores 

Embedded Multicore Challenge 

 - Programmability of DMA and private memories 
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2nd GENERATION MPPA® MANYCORE ARCHITECTURE (2016) 

5-ISSUE VLIW CORE COMPUTE CLUSTER BOSTAN PROCESSOR 

256+32 cores at 600 MHz, 28nm 16+1 cores, 2 MB local memory 64x 32-bit register file 



MPPA® BOSTAN PROCESSOR SPATIAL PARTITIONING 

Page 7 ©2017 – Kalray SA All Rights Reserved 

Ethernet Router 

Computer Vision 

Deep Learning 

Sensor Fusion 

- Simpler execution platform with 

one ISA and compatible 

programming environments 

 

- Energy-efficient and time-

predictable 

 

- Compute-intensive functions run 

in true concurrency 

 

- Freedom from interference 

between functions 

BENEFITS 

L
IN

U
X

 
E

th
e

rn
e

t 

E
th

e
rn

e
t 

R
T

O
S

 

Sensor 

Fusion 

Computer 

Vision 

Deep Learning 



Page 8 ©2017 – Kalray SA All Rights Reserved 

Deep Neural Networks (DNN) 

• Input data are processed through successive layers, with each layer applying multiple linear and non-linear operations 

DNN training versus inference 

• Representative data sets are used to train the network based on large number of samples (off-line) 

• Trained system are deployed in embedded systems and process input under real-time constraints 

CNN (Convolutional Neural Networks) 

• Biologically-inspired DNN with a majority of convolutional layers and a few fully-connected layers 

• In a convolutional layer, neuron activation is computed as a convolution between inputs and a set of (height, width) 

translation-invariant parameters 

CNN as a building block for perception 

• Regional-CNN (R-CNN),  Fast R-CNN, Faster R-CNN for image segmentation and object detection 

• CNN features feeding LSTM (Long-Short Term Memory) networks for object detection and tracking 

DEEP LEARNING INFERENCE IN PERCEPTION 



CNN INFERENCE OVERVIEW 
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State of a CNN layer is a 3D pixel matrix, 

similar to a 2D image with many channels 
• Not just 3 channels as on RGB image but typically between 

100 and 1000 

• Pixels are in 32-bit or 16-bit IEEE binary float format on 

mainstream frameworks like Berkeley Caffe 

• Frameworks such as Google TensorFlow are moving to 16-

bit or 8-bit integer quantization of float formats 

During inference, each layer is used to compute a new image 
• Convolution, average, sub-sampling, rectified linear unit (reLU), local response 

normalization (LRN), softmax, deconvolution, … 

images 



NxN convolutions decomposed as accumulations of N2 1x1 convolutions  

• 1x1 convolutions can be computed in parallel and accumulated in any order 

• Pixels  layout is sequential along depth (channels) for dense memory accesses 

CNN INFERENCE ON A MANYCORE PROCESSOR (1) 
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Partition images across clusters, splitting along spatial and/or depth dimensions  

• Spatial dimension splitting requires that the full set of parameters be loaded from external memory 

• Temporal dimension splittig requires access to the whole input image and a subset of the parameters 

• NoC multicasting of parameters fosters spatial dimension splitting except for small dimension (e.g. FC) 

CNN INFERENCE ON A MANYCORE PROCESSOR (2) 

3 3 𝑑𝑖𝑛 [𝑑𝑜𝑢𝑡] 3 3 𝑑𝑖𝑛 [𝑑𝑜𝑢𝑡/4] 
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Process layers sequentially, overlapping computations with on-chip communications  

• With spatial dimension splitting, each local memory stores a tile + shadow region of the previous image 

• Compute the current image from previous one in 3 steps to overlap execution with shadow region transfers 

CNN INFERENCE ON A MANYCORE PROCESSOR (3) 
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Build a local memory buffer allocation and task execution schedule in cluster 

• Overlap parameter transfers from external memory  with computations on local memory 

• Allocation and scheduling are performed on the CNN network, considering an image corresponds to pre and post 

tasks, and layer compute operations corresponds to a malleable task 

• All clusters operate in SPMD (Single Program Multiple Data) to benefit from parameter multicasting by the NoC 

 

 

 

 

 

 

 

 

• Pre tasks load biases from external memory into the layer local memory buffer 

CNN INFERENCE ON A MANYCORE PROCESSOR (4) 
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For layers where images do not fit on-chip, stream sub-tiles from external DDR memory 

• All clusters put (remote write) their tile of output image to DDR memory, then enter a synchronization barrier 

• After clusters leave the barrier, they pipeline the get (remote read) from DDR / operate / put to DDR of sub-tiles 

• Larger sub-tiles factor more control overhead but reduce the amount of pipelining 

CNN INFERENCE ON A MANYCORE PROCESSOR (5) 
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MPPA® BOSTAN VS CPU & GPU ON CNN INFERENCE 
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MPPA® BOSTAN VS MPPA® COOLIDGE ON CNN INFERENCE 

(*) Half Precision FLOPS -  16 FMA/cycle/core  with  CNN co-processor  

      Including PCIe gen3 x8 – DDR4 3200 – Ethernet 4x1Gb 
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3rd GENERATION MPPA® MANYCORE ARCHITECTURE (2018) 

5-ISSUE VLIW CORE COMPUTE CLUSTER COOLIDGE PROCESSOR 
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80+5 cores at 1200 MHz, 16nm 16+1 cores, 4 MB local memory 64x 64-bit register file 



OpenCL abstract architecture 

• OpenCL Device has one global memory shared by Compute Units 

• OpenCL Compute Unit has one local memory shared by Processing Elements 

• OpenCL Processing Element has a private memory, local and global caches 

OpenCL on a manycore processor with local memories 

• Work Item executions may be aggregated on each core to expose more ILP 

• Using OpenCL async_work_group_copy  between local & global memories is highly effective 

Cannot be expressed in standard OpenCL 

• Data transfers between Compute Unit local memories 

• Multicasting data transfers between global and local memories 

• Direct data transfers across OpenCL devices (global memories) 

HIGH PERFORMANCES ON MPPA®: BEYOND OPENCL 
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Inspired by HPC clusters one-sided 

communication & synchronization 

• Cray SHMEM, ORNL ARMCI, Berkeley GasNet, MPI-3 one-

sided communications subset 

• Cannot directly reuse these HPC communication libraries 

because of the MPPA® memory architecture 

Asynchronous remote data transfers 

• Put (remote DMA write) and Get (remote DMA read) one-

sided operations between memory segments 

• Operations return immediadely to caller, an event structure 

can be used to wait/test for local completion 

• Collective Put/Get operations leverage NoC multicasting 

• Generalization of OpenCL async_work_group_copy  

MPPA® ASYNCHRONOUS ONE-SIDED OPERATIONS (1) 
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Point-to-point synchronization operations 

• Fence (global completion), peek, poke, post-add, fetch-

clear, fetch-add 

• Local wait on the comparison between a local variable 

and a value 

• No busy waiting, lock-free data structures 

• Building blocks for efficient barriers and semaphores 

Remote queues N to 1 

• Push on a remote queue-like memory segment, with 

atomicity if possible 

• Classic distributed synchronization primitive, foundation 

of active messages 

MPPA® ASYNCHRONOUS ONE-SIDED OPERATIONS (2) 
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Parts of standard OpenCL that are useful on a manycore processor 

• Host program allocates global buffers, creates executables kernels, and dispatches work in queues 

• Kernel invocation with a user-defined argument list, which distinguishes between local and global objects 

Parts of OpenCL that must be extended for better performances & functionality 

• Kernel code written in standard C/C++ and/or assembly language 

• Kernel code that exploits CPU-style multi-threading [TI’s “OpenMP Dispatch With OpenCL”] 

• Kernel code that accesses the local memory of other Compute Units 

OpenCL 1.2 extensions for the MPPA® processor 

• Use the OpenCL Task Parallel mode to dispatch one Work Group of one Work Item on each cluster 

• Kernel code linked with ELF executable uses Pthreads or GCC OpenMP to activate cluster cores 

• Kernel code accesses the full asynchronous one-sided communications & synchronizations API 

 

MPPA® EXTENSIONS OF OPENCL TASK PARALLEL MODE 
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The MPPA® manycore architecture excels on standard CNN inference 

• Not only on performance, but also on energy efficiency and time-predictability 

• The key is to exploit the high-bandwidth local memory shared by cores in a cluster 

• This is achieved by the KaNN code generation tool working from standard Caffe descriptions 

Standard OpenCL environment must be extended to enable such performance 

• Standard OpenCL Task Parallel mode has been extended to support C/C++, pthreads & OpenMP, and asynchronous 

one-sided operations between Compute Units (MPPA® compute clusters) 

• Resulting programming model is excellent for direct coding and as a code generation target, unlike KPN models 

Techniques successfully applied by the KaNN code generator will be reused 

• KaNN extensions to 8-bit and 16-bit fixed-point computations as enabled by standard frameworks (TensorFlow) 

• KaNN extensions to Binarized Neural Networks (BNN), where convolution becomes POPCOUNT(XNOR) 

• OpenVX framework for MPPA® processor under development (to be released end of 2017) 

CONCLUSIONS AND PERSPECTIVES 
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