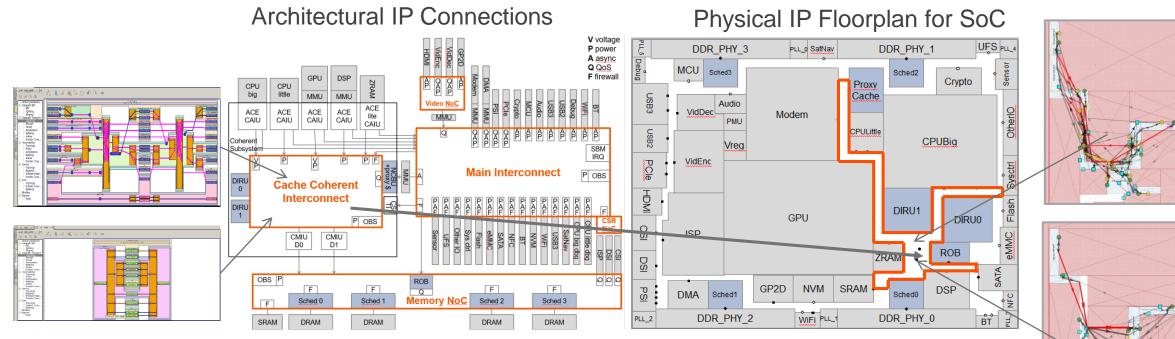
ARTERİS


Resilient Interconnect for Functionally Safe Automotive SoCs

MPSOC CONFERENCE, JULY 2017, ANNECY FRANCE

K. CHARLES JANAC

President and CEO

SoCs Are now Assembled from IP Blocks

- Large SoCs have multiple classes of interconnect IPs
 - Non-coherent, Coherent, Control/Status, Observability, etc.
- All interconnects must be converted from architectural IPs to Physical Ips
- There are many requirements for PPA, Flexibility, Productivity, Safety & Security

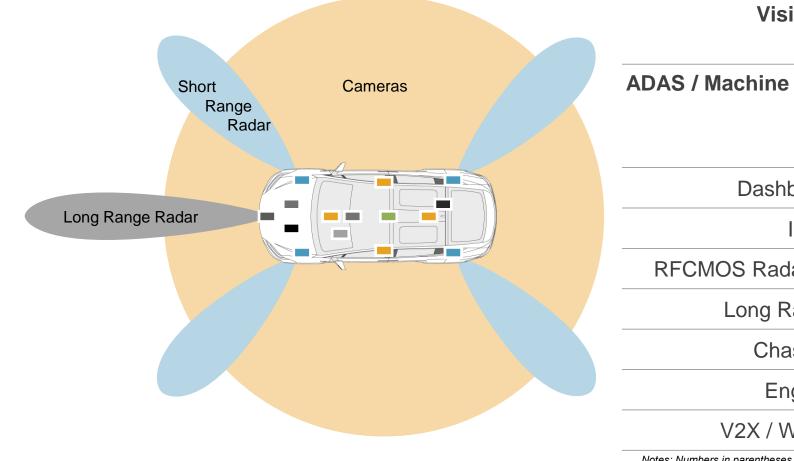
Resilience for Mission Critical Electronics

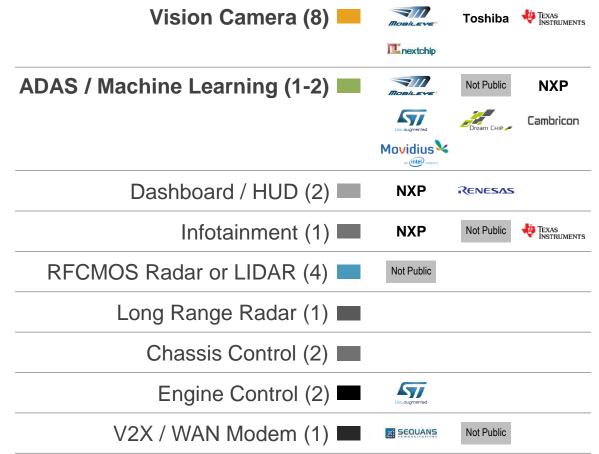
AUTOMATED VEHICLES REPRESENT THE NEXT GREAT GROWTH SEMICONDUCTOR MARKET

Automated Driving Potentially Solves Major Problems

- Fatalities: Globally 1.25M people die each year due to traffic accidents (WHO 2016), 20-50M injuries/year (WHO 2016)
 - 94% of the causes are at least partially due to human error (NHTSA 2016)
 - Economic cost is 2-3% of a country's GDP (WHO 2015)
- Automated Driving Opportunity: cut accidents per year by 80-90%, potentially saving 80-90% of \$871B/yr. cost in USA alone (NHTSA 2014) or ~\$700+B/year
- Use of Assets; Cars idle 80% of the time, Automated driving makes more efficient use of cars, roads and parking spaces – another 10s of Billions benefit
- Societal impacts cannot be fully predicted but will be large

Automated Driving Challenges


- Getting to level 4 automated driving technology (where car can manage the entire driving experience)
 - Sensor fusion for near realtime image recognition, machine learning for corner case management, optimization and queuing algorithms – need super computer performance
 - Functional safety and security of both hardware and software
 - Cost needs to be brought down to what customer is willing to pay
- Mixing manual and automated driving Transition to automated driving is a challenge
- Road infrastructure not designed for automated driving
- Many will be saved but few people are going to die because of automated driving technology
- Questions of insurance and legal liability, regulation and documentation


Delivering Resilient SoCs

AND AUTOMOTIVE REQUIREMENTS

Automotive SoCs in Automated Driving Vehicles

Notes: Numbers in parentheses are the number of "complex" SoCs per function. Logos and company names are publicly announced Arteris customers as of 1 Apr 2017.

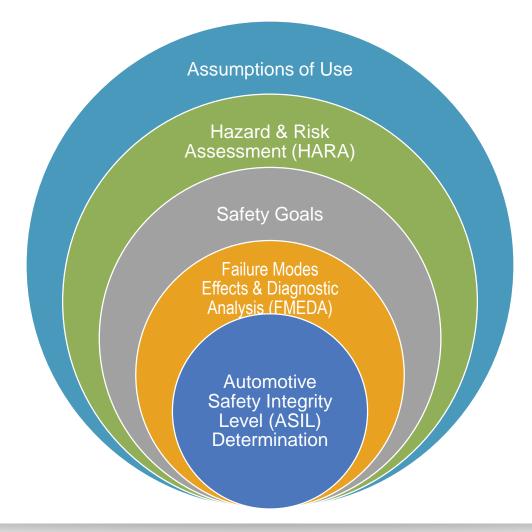
Source: Arteris, Inc.

ARTERIS

ISO 26262 Functional Safety

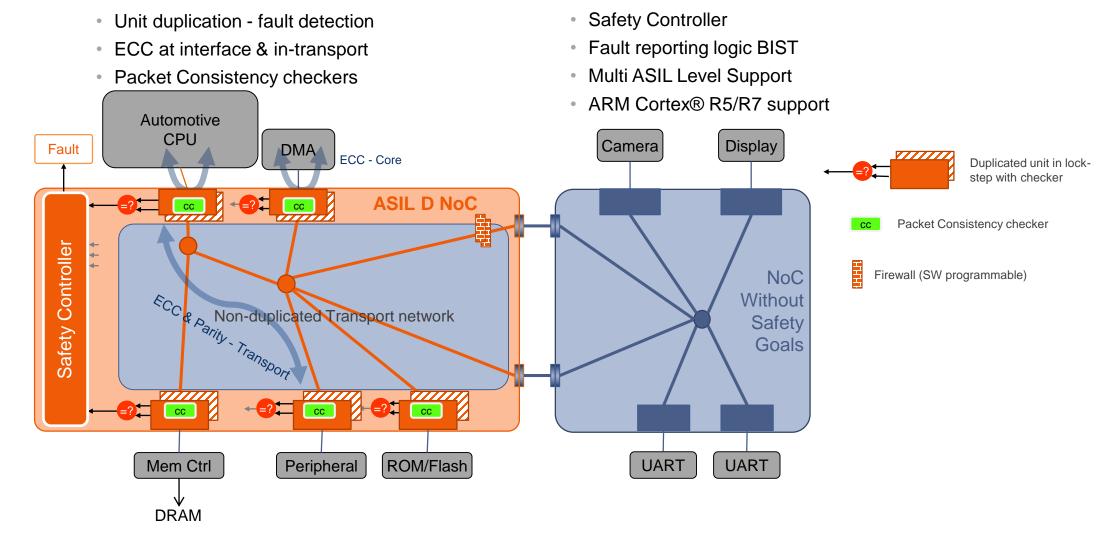
LET'S ADD EVEN MORE COMPLEXITY...

ISO 26262 and Automotive Functional Safety


- Safety throughout supply chain (IP, HW, SW, processes)
- Functional safety risks include:
 - Random hardware faults
 - Systematic faults
- Multiple safety systems
 - Active accident prevention
 - Passive accident mitigation

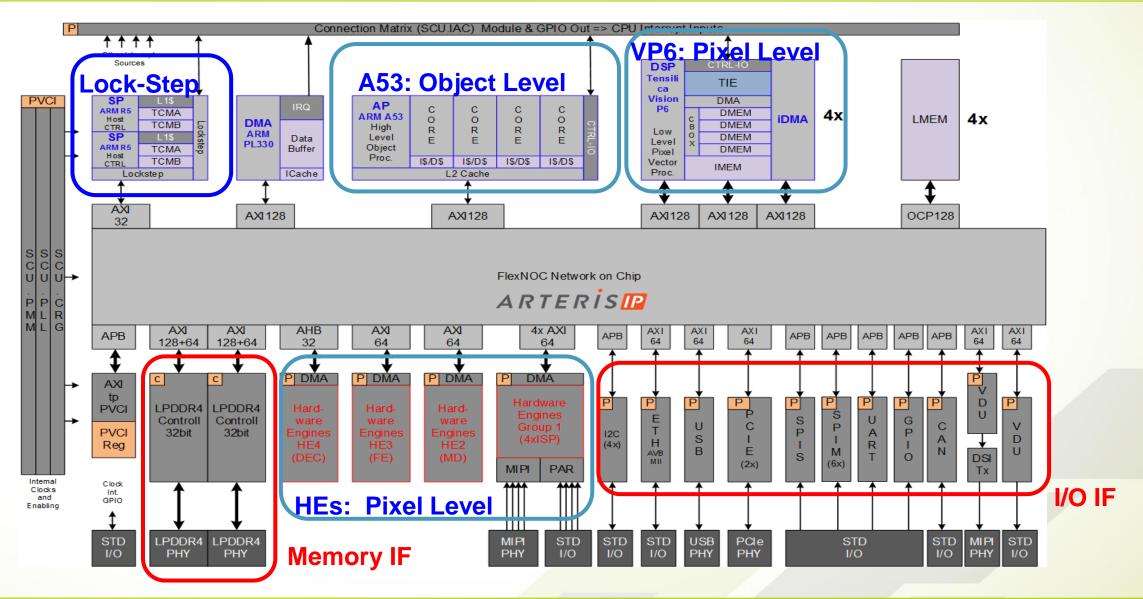
	Didit i iitid	RNATIONAL STANDAF ISO/DIS 26262-1
	ISO/TC 22 /SC 32 Voting begins on:	Secretariat: JISC Voting terminates on:
Road vehicles — Fu	2016-09-21	2016-12-13
Part 11:	ation of ISO 26	262 to semiconductors
Partie 11: titre manque		
PR		
	This document is circulated	as received from the committee secretariat.
FOR COMMENT AND APPROVAL IT IS THEREFORE SUBJECT TO CHANGE AND MAY NOT BE REFERRED TO AS AN INTERNATIONAL STANDARD UNTL PUBLISHED AS SUCH. IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECINOLOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO	This document is circulated	as received from the committee secretariat.
FOR COMMENT AND APPROVAL IT IS THEREFORE SUBJECT TO CHANGE AND MAY NOT BE REFERRED TO AS AN INTERNATIONAL STANDARD UNTL PUBLISHED AS SUCH. IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL TECHNOLOGICAL COMMERCIAL AND USER PIEPOSS DRAFT UNTERNATIONAL.	This document is circulated	as received from the committee secretariat. Reference num ISO/DIS 26262-11.2016

The Safety Process (simplified)


ARTERİS

What is an ASIL (Automotive Safety Integrity Level)?

	When	ASIL B	ASIL C	ASIL D
SPFM Single Point Fault Metric	Operating	> 90 %	> 97 %	> 99%
LFM Latent Fault Metric	Key-on	> 60 %	> 80 %	> 90 %
FIT Failure in Time	Operating	-	< 100	< 10


Ramifications	Definitions	
Hardware protection in SoC interconnect (rules of thumb)	Single Point Fault Metric (SPFM) - % coverage by	
 ASIL B = fault detection (ECC/parity, SW) 	safety mechanisms	
 ASIL C/D = unit duplication for key logic 	Latent Fault Metric (LFM) - % coverage by safety mechanisms of multi-point faults	
Built-in Self Test (BIST) and checkers required for HW safety mechanisms!	Failure in Time (FIT) - # of expected failures in one billion hours (114,155 years)	

FlexNoC Main Interconnect with Resilience Support

Low Power CNN Architecture

Dream Chip Technologies

For Safe, Scalable Automotive SoCs

CAPABILITIES

- Resilience: Data link protection, intelligent HW unit duplication, fault controller
- ASIL B ECC, Parity Bit
- ASIL C ECC, Parity Bit and Packet Integrity Check
- ASIL D ECC, Parity Bit, Packet Integrity & Unit Duplication

BENEFITS

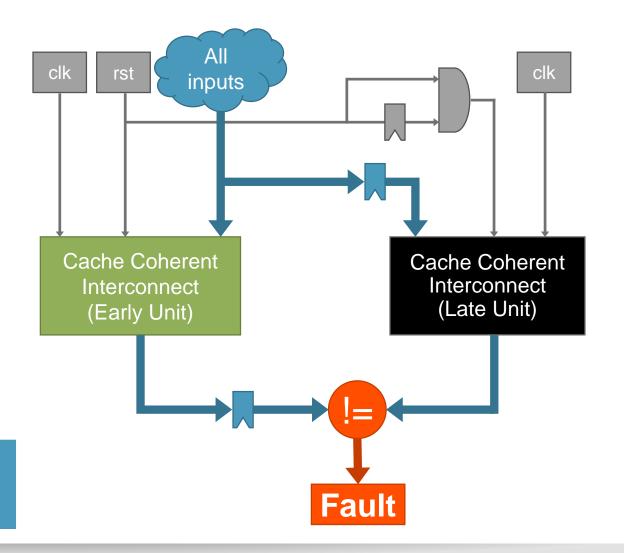
- Achieve higher ASILs than feasible through software
- Simplify software by protecting hardware
- Easier FMEDA
- Easier integration of multiple processing elements, whether coherent or non-coherent
- Simplified software for NN systems, especially Recurrent (RNN)
- More flexible and area- and power-efficient

Need Resilient Interconnect for Functionally Safe Vehicles

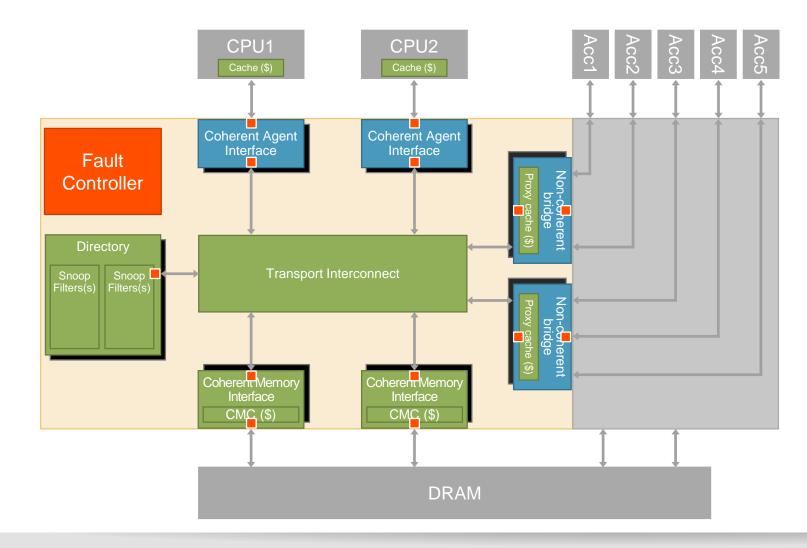
Quantitative Safety Analysis Results for FlexNoC Interconnect

	Permanent faults	Transient faults
	00.00%	00.000/
Diagnostic Coverage for Residual Faults:	99.36%	99.39%
Diagnostic Coverage for Latent Faults:	99.69%	
Single Point Fault Metric:	99.37%	99.64%
Latent Fault Metric:	99.69%	

Architectural metrics related to ASIL D case


Analysis of the FlexNoC interconnect shows it can reach ASIL D on all ISO26262 Metrics Source: Yogitech

But What About Cache Coherency?


The Brute Force Approach

- Duplicate the entire interconnect, run in lockstep
- Why is this wasteful?
 - Blows up design area fast ~120% overhead
 - Not power efficient
 - More integration work
 - Complexity inversely proportional to safety

Can we do better?

Ncore Cache Coherent Interconnect with Resilience

ARTERIS

- Data protection (at rest & transit)
 - Parity 8 data path protection
 - ECC memory protection
- Intelligent Ncore hardware
 unit duplication
 - Don't duplicate protected memories or links
 - Only duplicate HW that affects packets
 - Integrated checkers, ECC/parity generators & buffers
- Fault controller with BIST

What is Next for Resilient Interconnect?

FAIL OPERATIONAL

Fail Operational

Autonomous HW requires safer, smarter SoCs

- All functions such as power management, security and QoS must work with Resilience
- Resilience has a cost so must minimize power, performance and area penalties
- All types of interconnect IPs must be made resilient; coherent, non-coherent, subsystems
- Resilience must be supported by documentation, safety verification and certification
- All autonomous vehicles will contain some form of Resilient Interconnect
- ISO26262 compliance is "table stakes" to thrive in the autonomous vehicle SoC market
- Resilience is the path to Fail Operational SoCs

NoC Interconnect for autonomous hardware SoCs

Thank you

CHARLIE.JANAC@ARTERIS.COM