

PHOTONIC MPSOC

Photonic MPSOC | Fabien Clermidy | July 5th 2017

COMMUNICATION BOTTLENECKS IN MANYCORES

leti

CHIPLET PARTITIONING ON INTERPOSERS TO INCREASE YIELD... AND REDUCE DESIGN COST

- Higher manufacturing defects per cm² in advanced CMOS nodes
 - Very-low yield on large monolithic dies
- Options:
 - Design 4–6 cm² dies, deactivate processors, sell as lower grade
 - Design ≤1 cm², and stack on variability tolerant interposer
- Need an efficient and scalable interconnect solution

Metallic interposer Active interposer Photonic interposer

- + High yield, low cost
- + Low latency
- Don't scale
- Low flexibility
- Low bandwidth

- + Chiplets scaling
- + Communication adaptation
- Cost (?)
- Medium bandwidth

- + Low latency
- Huge bandwidth density
- Flexibility
- Static power

HUBEO+ MANYCORE ARCHITECTURE

- 96 cores in 6 chiplets on the interposer
 - Coherent shared-memory
 - Boots a single Linux OS
- ONoC to convey cache coherence protocol
 - 6 wavelengths used in parallel at 12 Gbps
 - Complete connection between 8 transceivers/routers
 - Fan-out to the distributed L3 caches, main memory and peripherals.
 - ➔ Peak aggregated bandwidth on the interposer is 576 Gbit/s

ONOC DESIGN CHALLENGES

• Ultra-dense integration

- Implementing a complete graph interconnection
- Drivers limited to ~0.01mm² per channel

Power-efficient architecture

- But with good scaling properties
- Synchronous NoC point-to-point communication power budget > 20pJ/bit

• Wide temperature range

- The system should also be operational at ambient temperature and full load
- → 0°C to 90°C operating range

ULTRADENSE MICRORING RESONATORS

• Dense integration requirement:

- Mach-Zehnder modulators are too long to be matriced locally (>1mm)
- → Microring resonators are compact
 - → have sharp resonances allowing WDM
 - → PN or PIN diode junction for electrical control
 - PN rings can be used as modulators (> 10 Gbps)
 PIN rings can be used as filters (<500 MHz) for routing and wavelength demultiplexing

(2016)[SPIEOI] Reboud et al.

POWER EFFICIENT ARCHITECTURE: ONOC TOPOLOGY

Patent (2013) EP2874334 / US9479256

leti

ceatech

Photonic MPSOC | Fabien Clermidy | July 5th 2017 | 9

THERMAL TUNING

leti

Ceatech

- Use of the drop-port of the modulator
 - Robust closed-loop control
 - Decision thresholds for remapping with hysteresis
 - Digital remapping decision from the different rings of the WDM
 - Automatic remapping to higher/lower wavelength

PHOTONIC TRANSMISSION RESULTS

28nm FDSOI Total link: 0,48pJ/bit

Photonic MPSOC | Fabien Clermidy | July 5th 2017 | 11

Photonic MPSOC | Fabien Clermidy | July 5th 2017 | 12

- Interposers are key to continue many-core integration
- Silicon photonics are high-end solutions providing the best scaling capabilities
- In the long run, with unified optical interfaces for on-chip and offchip communication, the computation model itself could evolve

Many thanks to Yvain Thonnart And its HUBEO+ team

Leti, technology research institute Commissariat à l'énergie atomique et aux énergies alternatives Minatec Campus | 17 rue des Martyrs | 38054 Grenoble Cedex | France www.leti.fr

