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Where are the synchronization barrier ?

#include <omp.h> \-

#define TAB SIZE 1000
int main (void)
{
unsigned int n=0;
unsigned int sinTable[TAB SIZE];

omp set num threads(16); Parallelization of
#pragma omp parallel for shared (sinTable) _ 1000 computations
for (n = 0; n < TAB SIZE; n++)

sinTable[n] = n * 2; on 16 threads

& — Implicit
synchronization barrier

print_table(sinTable);
return 1; €_—_—_—___-~‘"“‘-—————__

But it introduces a delay in the execution
2

Print results




Motivation through an example

release delay by thread

* The Y-axis represents the
number of cycles between the
arrival of the last thread to
the barrier, and the time a
thread leaves the barrier to
resume its nominal execution.

* The last thread takes 29092
cycles to resume its
execution

nb cycles before execution resuming

* The figure represents the \
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Definitions, motivations, and challenges

Efficient emulation environment

Observations and optimizations for active wait
Observations and optimizations for passive wait
Conclusion and future work



More details of synchronization barriers

* 2 kinds of delays are introduced by synchronization barriers

* Application dependant delays (long time to completion for one
task)

* Intrinsic delays of the synchronization itself

* In a barrier, a thread waits until the others get ready
* Active wait (or busy wait): polling on a waiting flag
* Passive wait: the waiting thread is put in sleeping mode

* After a predefined amount of time for GNU OpenMP

* Usually based on Futex in Linux ("Fast Usermode muTEX"), it may
request relatively expensive system calls to manage operations on
the wait queue.
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Challenges for optimizations

* How to get an accurate measurement ot
synchronization barriers ?

* Usually, it consists in code instrumentation to extract timing
information ... and it affects the program behavior itself ...

* So ourideais to provide a solution:
* Efficient (for observation and measurement)
* Effortless for software (application) developpers

We have developped a non-intrusive measurement tool chain
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Experimentation Environment

o Cluster1 Cluster3
* Full coherent shared memory
manycore platform

* MIPS32 processor (private L1)

* L2 cache is a shared memory i

* Cross-bar VCI protocol in cluster /@ I

* DSPIN NoC between clusters Cross-bar Vel Cluster2
(S S S )

. $ $ $ $ ache
* EValuatlon platform = = - - (':W;:“ L2 cache memories are shared by

CPU cPU CPU CcPU L2 all elements composing the system

* Veloce2 Quattro emulator \ —/

* Full RTL system with cycle accurate precision

* Port and boot of Linux 4.6 (and uclibC)

* Use of gcc for app. and OpenMP library compilation
* 8,16 and 24 core architectures have been emulated




A non-intrusive measurement

toolchain

* Thank to the communication between t
workstation:

* Extraction of useful signals (CPU registers, ... ) at runtime
* These signals are dumped into files to be analyzed later

* Such monitors do not disturb the nominal execution flow of the
program

* No modification of the original application source code

* Off course, it requires:
* some modifications of the RTL platform to implement monitors
* SW tools to follow function calls and make timing analysis




Observations for active wait

cycles to resume its execution

Thank to our measurement tool
chain, we identified a contention
issue in the DSPIN network (L2
memory is not able to serve all
requests)

* Kernel accesses

* Periodic polling of the waiting flag
* Managing the Futex list

* The function call stack reveals that
about 28000 cycles are spent on
managing Futex (passive wait)

nb cycles before execution resuming

* The last thread takes 2909\
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Optimizations for active wait

* Modification of the GNU \

OpenMP library removing the
Futex management (passive Ccweimmane
wait) when threads are waiting | gsoormewaues ]

only in active wait mode TNk K
I oL R i
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Optimizations for active wait

* Huge gain for this optimizam

Threads | full release phase | full release phase | Gain

number | delay without delay with
optimization optimization
8 on 5425 cycles 656 cycles 88%

8 cores (median) (median) |
on 29092 cycles 2107 cycles 93%
< 16 cores (median) (median) >
MW 96%

24 cores (median) (median)

* This optimization is transparent for the SW developer

* Such optimizations seem to be implemented on LLVM
OpenMP (not available for our experiment environment).
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Observations for passive wait

e last thread arriving at the barrier p: O\
IPIs (Inter-Processor Interrupt) to all the ott
wait mode (to wake them up)

* Sequential process managed by kernels
* Ouridea was to provide HW IP for multicast IPI generation
* Same application with 2 kinds of barriers (on a 64 cores arch.)
* Pthread barrier (explicit barriers)
* GNU OpenMP (implicit barriers)

Median exec. time

Pthread app. 4882023 cycles
GNU OpenMP app. 5398377 cycles

* For both applications, we have observed a memory contention, as
all threads on passive wait are awaked at the same time
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Optimizations for passive wait

* Theidea is to introduce a delay between

measure the best performance

Release time for the 64 threads depending
on inter-IPI delays
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Optimizations for passive wait

The best release time is obtained with a

inter-IPI delay Median exec. time Gain

Pthread app.ref 4882023 cycles
500 Us 1932063 cycles 61%

inter-1PI delay Median exec. time Gain

GNU OpenMP app.ref 5398377 cycles
500 us 1970235 cycles 64 %

* Alot of questions
* How to get the optimal delay ?
* Is it platform dependant ?
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Conclusion and Perspectives

of Synchronization barrier

* Improvement and validation:

* Active wait: GNU OpenMP library
* About 90% improvement of release time

* Passive wait: GNU OpenMP and Pthread

* Introduction of a delay between 2 IPIs for a 60% improvement of release
time

* Next steps
* Active wait:

* Validation on multiprocessor machine and on simulation with some
more applications

* Passive wait:
+* How to determine a minimum delay to generate IPI ?
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