MPSEE 117

Accurate Study and Optimization
of Synchronization Barriers in a
NoC based MPSoC Architecture

Frédéric Rousseau

TIMA lab - University of Grenoble Alpes

A joint work with Maxime France-Pillois e

CEA LETI
UNIVERSITE
1 ' Grenoble

4 Alpes

Where are the synchronization barrier ?

#include <omp.h> \-

#define TAB SIZE 1000
int main (void)
{
unsigned int n=0;
unsigned int sinTable[TAB SIZE];

omp set num threads(16); Parallelization of
#pragma omp parallel for shared (sinTable) _ 1000 computations
for (n = 0; n < TAB SIZE; n++)

sinTable[n] = n * 2; on 16 threads

& — Implicit
synchronization barrier

print_table(sinTable);
return 1; €_—_—_—___-~‘"“‘-—————__

But it introduces a delay in the execution
2

Print results

Motivation through an example

release delay by thread

* The Y-axis represents the
number of cycles between the
arrival of the last thread to
the barrier, and the time a
thread leaves the barrier to
resume its nominal execution.

* The last thread takes 29092
cycles to resume its
execution

nb cycles before execution resuming

* The figure represents the \

10°

=
o
8]

=
o
IS

103 T T

10?2

F X : Maximum value

[#: Minimumvalue @ 0

m 50% of thevalues @ @
-"—:Media‘n : : oo : : Co

——

1 2 3 4 5 6 7 8 9
thread wakening order

Definitions, motivations, and challenges

Efficient emulation environment

Observations and optimizations for active wait
Observations and optimizations for passive wait
Conclusion and future work

More details of synchronization barriers

* 2 kinds of delays are introduced by synchronization barriers

* Application dependant delays (long time to completion for one
task)

* Intrinsic delays of the synchronization itself

* In a barrier, a thread waits until the others get ready
* Active wait (or busy wait): polling on a waiting flag
* Passive wait: the waiting thread is put in sleeping mode

* After a predefined amount of time for GNU OpenMP

* Usually based on Futex in Linux ("Fast Usermode muTEX"), it may
request relatively expensive system calls to manage operations on
the wait queue.

5

A leti

Challenges for optimizations

* How to get an accurate measurement ot
synchronization barriers ?

* Usually, it consists in code instrumentation to extract timing
information ... and it affects the program behavior itself ...

* So ourideais to provide a solution:
* Efficient (for observation and measurement)
* Effortless for software (application) developpers

We have developped a non-intrusive measurement tool chain

| 6

Experimentation Environment

o Cluster1 Cluster3
* Full coherent shared memory
manycore platform

* MIPS32 processor (private L1)

* L2 cache is a shared memory i

* Cross-bar VCI protocol in cluster /@ I

* DSPIN NoC between clusters Cross-bar Vel Cluster2
(S S S)

. $ $ $ $ ache
* EValuatlon platform = = - - (':W;:“ L2 cache memories are shared by

CPU cPU CPU CcPU L2 all elements composing the system

* Veloce2 Quattro emulator \ —/

* Full RTL system with cycle accurate precision

* Port and boot of Linux 4.6 (and uclibC)

* Use of gcc for app. and OpenMP library compilation
* 8,16 and 24 core architectures have been emulated

A non-intrusive measurement

toolchain

* Thank to the communication between t
workstation:

* Extraction of useful signals (CPU registers, ...) at runtime
* These signals are dumped into files to be analyzed later

* Such monitors do not disturb the nominal execution flow of the
program

* No modification of the original application source code

* Off course, it requires:
* some modifications of the RTL platform to implement monitors
* SW tools to follow function calls and make timing analysis

Observations for active wait

cycles to resume its execution

Thank to our measurement tool
chain, we identified a contention
issue in the DSPIN network (L2
memory is not able to serve all
requests)

* Kernel accesses

* Periodic polling of the waiting flag
* Managing the Futex list

* The function call stack reveals that
about 28000 cycles are spent on
managing Futex (passive wait)

nb cycles before execution resuming

* The last thread takes 2909\

10°

=
o
w

=
o
IS

=
o
w

F X : Maximum value

[@: Minimumvalue @

B m 50% of the values = :
[—: Median S

——

1 2 3 4 5 6 7 8 9
thread wakening order

Optimizations for active wait

* Modification of the GNU \

OpenMP library removing the
Futex management (passive Ccweimmane
wait) when threads are waiting | gsoormewaues]

only in active wait mode TNk K
I oL R i

...

g Froion RS SRR R L Rt R LR RS TR o]
ltreducesthe contention | | b
troubles in Lz memory g |)l(’I(’l()l(..... : : , :::: : :
g ________________________ A R S l_.::.!::__!::::!_::._:_.._:E:_:i::
RN R A L O S R .
K x x X LA 2107
* The last arriving thread is the ¢ |, F.HE”?@
R Je b e e e

first to resume . Ey
|

,,

2 U S S S S S S U U SUREE ORI SO
10 :_‘:tttf""i S I S | L1 S IS S S S S SR |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10 thread wakening order

Optimizations for active wait

* Huge gain for this optimizam

Threads | full release phase | full release phase | Gain

number | delay without delay with
optimization optimization
8 on 5425 cycles 656 cycles 88%

8 cores (median) (median) |
on 29092 cycles 2107 cycles 93%
< 16 cores (median) (median) >
MW 96%

24 cores (median) (median)

* This optimization is transparent for the SW developer

* Such optimizations seem to be implemented on LLVM
OpenMP (not available for our experiment environment).

11

Observations for passive wait

e last thread arriving at the barrier p: O\
IPIs (Inter-Processor Interrupt) to all the ott
wait mode (to wake them up)

* Sequential process managed by kernels
* Ouridea was to provide HW IP for multicast IPI generation
* Same application with 2 kinds of barriers (on a 64 cores arch.)
* Pthread barrier (explicit barriers)
* GNU OpenMP (implicit barriers)

Median exec. time

Pthread app. 4882023 cycles
GNU OpenMP app. 5398377 cycles

* For both applications, we have observed a memory contention, as
all threads on passive wait are awaked at the same time

12

Optimizations for passive wait

* Theidea is to introduce a delay between

measure the best performance

Release time for the 64 threads depending
on inter-IPI delays

6000000
5000000
4000000
3000000

2000000

Number of cycles

1000000

(0]

10 100 250 500 1000

Delay between 2 IPIs (en us)

Pthread

Release time for the 64 threads depending
on inter-IPI delays

6000000
5000000
4000000
3000000

2000000

Number of cycles

1000000

(0]
10 100 250 500 1000

Delay between 2 IPIs (en us)

GNU OpenMP

13

Optimizations for passive wait

The best release time is obtained with a

inter-IPI delay Median exec. time Gain

Pthread app.ref 4882023 cycles
500 Us 1932063 cycles 61%

inter-1PI delay Median exec. time Gain

GNU OpenMP app.ref 5398377 cycles
500 us 1970235 cycles 64 %

* Alot of questions
* How to get the optimal delay ?
* Is it platform dependant ?

14

Conclusion and Perspectives

of Synchronization barrier

* Improvement and validation:

* Active wait: GNU OpenMP library
* About 90% improvement of release time

* Passive wait: GNU OpenMP and Pthread

* Introduction of a delay between 2 IPIs for a 60% improvement of release
time

* Next steps
* Active wait:

* Validation on multiprocessor machine and on simulation with some
more applications

* Passive wait:
+* How to determine a minimum delay to generate IPI ?

15

MPSEE 117

Accurate Study and Optimization
of Synchronization Barriers in a
NoC based MPSoC Architecture

Frédéric Rousseau

TIMA lab - University of Grenoble Alpes

A joint work with Maxime France-Pillois e

CEA LETI
UNIVERSITE
16 ' Grenoble

4 Alpes

