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Evolution of 10T connected devices
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Data in Internet of Things

m |oT networks will generate more than 400
zettabytes (trillion gigabytes) of data a year by
2018 (CISCO, 2015)

B Data generated by loT devices arrive
continuously and needs to be processed on

the fly

» Streaming data
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Examples of streaming data

= Sensor, monitoring & surveillance: video streams, RFIDs

= Security monitoring

= Web logs and Web page click streams

= Telecommunication calling records

= Business: credit card transaction flows

* Network monitoring and traffic engineering

" Financial market: stock exchange

" Engineering & industrial processes: power supply & manufacturing
» Massive data sets
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Smarter decisions

v" Advanced data mining technique required
v’ Streaming data arrive continuously, is unbounded and non-stationary
v Data is scanned once and hidden patterns are constructed online
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Need for on-line data mining

= Data stream clustering is the online process classifying
a group of abstract objects

Estimated number of clusters: 3
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= Most used clustering techniques
» Density-based os|
> Partitioning 00
» Hierarchical o
> Grid-based -
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Clustering Shape of No. of Outlier’s | Variable | Time
Technique Cluster clusters handling | Density | Complexity
DBSCAN Density-based | Arbitrary X v X O(n log n)
Incremental | Density-based | Arbitrary X v X O(n) +
DBSCAN O(n log n)
OPTICS Density-based | Arbitrary X v X O(n log n)
DENCLUE Density-based | Arbitrary X O(n log n)
Sequential Partitioning Hyper-Spherical | Required X - O(ndk+1)
K-means
CLARANS Partitioning Hyper-Spherical | Required v - O(n?)
CURE Hierarchical Non-spherical X X O(n? log n)
CHAMELEON | Hierarchical Arbitrary Required X O(n log + nk
+ k? log k)
BIRCH Hierarchical Hyper-Spherical | Required v v O(n)
STING Grid-based Arbitrary X v v O(c)
Wave Cluster | Grid-based Arbitrary X v v O(n)

n = No. of data samples d = no. of data dimensions

no.of clusters c = no. of grid cells

lk=




Proposed Algorithm — Considerations
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Data streams are continuous and unbounded

Data samples are linearly scanned (processed) only once before
being discarded

No assumption or prior knowledge of the number of clusters
Data stream flows are grouped on arbitrary shaped clusters
Ability to handle outliers

Algorithm scalability to the number of incoming data samples



Clustering Steps

Neighborhood discovering using
incremental Delaunay triangulation

Micro-clustering
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Construction of spatial proximity relationships using incremental
Delaunay triangulation of a simulated dataset. The resulting clustering
shows the potential clusters of the dataset
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The triangle containing the new point p is located
New edges are created to connect p to the
vertices of the containing triangle

The old edges of the triangle are inspected to
verify that they still satisfy the empty
circumcircle condition. If the condition is satisfied
the edge remains unchanged.

If it is violated the offending edge is flipped, that
is, replaced by the other diagonal of the
surrounding quadrilateral.

In this case two more edges become candidates
for inspection

The process continues until no more candidates
remain, resulting in the triangulation.
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Micro-clusters Building

B A Micro-Cluster is a set of individual data points that are
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close to each other and will be treated as a single unit in
further Macro-clustering or re-clustering stage.
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Snapshot of Micro-Clusters
in memory
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Micro-clusters building

What to Store in a Micro-Cluster ?

m Effcient data compression in a set of micro-clusters (Snapshot of data
groups that keeps changing over time as new samples arrive)
m Micro-cluster id
m Macro-cluster id
m Centroid coordinates
m Maturity index
m Closest neighbor
m Maturity threshold
m Magnetic distance
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Micro-clusters building

B How to deal with a new incoming data point?

1. Join one of the old micro-clusters if the data point is
within the closest micro-cluster magnetic field distance

2. Create a new micro-cluster by its own if it falls in an
empty region

Key idea: Additivity Property
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Micro-clusters building
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New incoming data point
falls in an empty space

Re-clustering to construct
macro-clusters

New incoming data point
falls within a micro-
cluster magnetic distance
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Re-culstering

Macro-cluster 1

Macro-cluster obtained by merging three
micro-clusters MC,, MC,, MC,

We assume that the maturity threshold of a
micro-cluster is equal to 3
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If the micro-cluster of the recently processed
data point reaches the maturity threshold, it is
considered for the re-clustering phase

The list of micro-clusters within the macro-
magnetic attraction field but currently
belonging to another macro-cluster is found

All the micro-clusters found in this region
become members of the data point macro-
cluster

These members will be re-clustered to be part
of the updated micro-cluster’s macro-cluster.
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(d) Delaunay triangulation of DS1
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(e) Delaunay triangulation of DS2
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(f) Delaunay triangulation of DS3

18



Micro-clusters
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Macro-clusters
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(1) DS3 Placed into macro-clusters

(k) DS2 Placed into macro-clusters

(j) DS1 Placed into macro-clusters
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Scalability
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Processing time per sample

Processing Time
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Conclusion

B Processing streaming data in real-time environments
requires new techniques in data mining

m Traditional offline methods appropriate only for resident
data stored in large data repositories and consequently
cannot address the problem of a continuous supply of data

B We propose a fully online and efficient incremental
Delaunay triangulation-based data stream clustering al-
gorithm

O Time and memory optimization
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