Data Stream Clustering for IoT

Gabriela Nicolescu

Heterogeneous Embedded Systems Laboratory Polytechnique Montréal

gabriela.nicolescu@polymtl.ca

Evolution of IoT connected devices

Data in Internet of Things

- IoT networks will generate more than 400 zettabytes (trillion gigabytes) of data a year by 2018 (CISCO, 2015)
- Data generated by IoT devices arrive continuously and needs to be processed on the fly

Streaming data

Examples of streaming data

- Sensor, monitoring & surveillance: video streams, RFIDs
- Security monitoring
- Web logs and Web page click streams
- Telecommunication calling records
- Business: credit card transaction flows
- Network monitoring and traffic engineering
- Financial market: stock exchange
- Engineering & industrial processes: power supply & manufacturing

Massive data sets

- ✓ Advanced data mining technique required
- ✓ Streaming data arrive continuously, is unbounded and non-stationary
- ✓ Data is **scanned once** and hidden patterns are constructed **online**

Need for on-line data mining

- Data stream clustering is the online process classifying a group of abstract objects
- Most used clustering techniques
 - Density-based
 - Partitioning
 - > Hierarchical
 - > Grid-based

	Clustering	Shape of	No. of	Outlier's	Variable	Time	
	Technique	Cluster	clusters	handling	Density	Complexity	S
DBSCAN	Density-based	Arbitrary	Х	√	Х	O(n log n)	sion
Incremental DBSCAN	Density-based	Arbitrary	X	~	х	O(n) + O(n log n)	dimen
OPTICS	Density-based	Arbitrary	Х	√	Х	O(n log n)	data Is
DENCLUE	Density-based	Arbitrary	Х	√	Х	O(n log n)	of o
Sequential K-means	Partitioning	Hyper-Spherical	Required	X	-	O(n ^{dk+1})	d = no. . of gric
CLARANS	Partitioning	Hyper-Spherical	Required	>	-	O(n ²)	e no
CURE	Hierarchical	Non-spherical	Х	>	Х	O(n ² log n)	amp s c =
CHAMELEON	Hierarchical	Arbitrary	Required	Х	1	O(n log + nk + k² log k)	^c data s cluster
BIRCH	Hierarchical	Hyper-Spherical	Required	1	1	O(n)	o. of o.of
STING	Grid-based	Arbitrary	Х	1	1	O(c)	ŽČ
Wave Cluster	Grid-based	Arbitrary	Х	1	1	O(n)	

Proposed Algorithm – Considerations

- Data streams are continuous and unbounded
- Data samples are linearly scanned (processed) only once before being discarded
- **No** assumption or prior knowledge of the number of clusters
- Data stream flows are grouped on arbitrary shaped clusters
- Ability to handle outliers
- Algorithm scalability to the number of incoming data samples

Neighbourhood discovering

Construction of spatial proximity relationships using incremental Delaunay triangulation of a simulated dataset. The resulting clustering shows the potential clusters of the dataset.

2017-06-14

10

(a)

- a. The triangle containing the new point *p* is located
- New edges are created to connect p to the vertices of the containing triangle
- c. The old edges of the triangle are inspected to verify that they still satisfy the empty circumcircle condition. If the condition is satisfied the edge remains unchanged.
- d. If it is violated the offending edge is flipped, that is, replaced by the other diagonal of the surrounding quadrilateral.
- e. In this case two more edges become candidates for inspection
- f. The process continues until no more candidates remain, resulting in the triangulation.

(e)

11

Micro-clusters Building

A Micro-Cluster is a set of individual data points that are close to each other and will be treated as a single unit in further Macro-clustering or re-clustering stage.

Micro-clusters building

What to Store in a Micro-Cluster ?

- Effcient data compression in a set of micro-clusters (Snapshot of data groups that keeps changing over time as new samples arrive)
 - Micro-cluster id
 - Macro-cluster id
 - Centroid coordinates
 - Maturity index
 - Closest neighbor
 - Maturity threshold
 - Magnetic distance

Micro-clusters building

- How to deal with a new incoming data point?
 - 1. Join one of the old micro-clusters if the data point is within the closest micro-cluster magnetic field distance
 - 2. Create a new micro-cluster by its own if it falls in an empty region

Key idea: Additivity Property

Micro-clusters building

Re-clustering to construct macro-clusters

Re-culstering

Macro-cluster obtained by merging three micro-clusters MC_1 , MC_2 , MC_3 We assume that the maturity threshold of a micro-cluster is equal to 3

- If the micro-cluster of the recently processed data point reaches the maturity threshold, it is considered for the re-clustering phase
- The list of micro-clusters within the macromagnetic attraction field but currently belonging to another macro-cluster is found
- All the micro-clusters found in this region become members of the data point macrocluster
- These members will be re-clustered to be part of the updated micro-cluster's macro-cluster.

Data Sets for Clustering Evaluation

2017-06-14

17

Triangulation

Micro-clusters

(g) Created micro-clusters of DS1

(h) Created micro-clusters of DS2

(i) Created micro-clusters of DS3

Macro-clusters

Scalability

2017-06-14

Processing Time

2017-06-14

23

Conclusion

- Processing streaming data in real-time environments requires new techniques in data mining
- Traditional offline methods appropriate only for resident data stored in large data repositories and consequently cannot address the problem of a continuous supply of data
- We propose a fully online and efficient incremental Delaunay triangulation-based data stream clustering algorithm

□ Time and memory optimization