Automatic Cache and Local Memory
Optimization for Multicores

Hironori Kasahara
Professor, Dept. of Computer Science & Engineering
Director, Advanced Multicore Processor Research Institute
Waseda University, Tokyo, Japan
IEEE Computer Society

President Elect 2017, President 2018
URL.: http://www.kasahara.cs.waseda.ac.jp/

Waseda Univ. GCSC

Hironori Kasahara Voted 2017 IEEE Computer Society
President-Elect

LOS ALAMITOS, Calif., 30 September 2016 — Hironori Kasahara, a Professor of Computer Science at Waseda University
in Tokyo, and Director of the Advanced Multicore Research Insititute, has been voted IEEE Computer Society 2017
President-Elect.

Kasahara is a former member of the IEEE-CS Board of Governors, has served as chair of the IEEE-CS Multicore STC and
CS Japan Chapter, and board member of the IEEE Tokyo Section. Kasahara will serve as the 2018 |EEE C35 President for
a one-year term beginning 1 January 2013, Kasahara garnered 3,278 votes, compared with 2,804 votes cast for Hausi A
rdller, a Professor of Computer Science and Associate Dean of Research, Faculty of Engineering at University of Wictoria,
Canada, and a member of IEEE-CS Board of Govermors.

The President oversees IEEE-CS programs and operations and is a nonvoting member of most IEEE-CS program boards
and committees. The 2016 election had a 12.69% tumout, with 6,357 ballots cast. The tumout was higher than the 2015
election with and 12.68%: turnout {5,239 ballots cast) and the 2014 election with & 12.66% tumout (6,725 ballots cast).

2016 IEEE Computer Society Election Results

Press Release | Ballot counts

Posted 29 September 2016

Hironori Kasahara selected 2017 President-Elect (2018 President)

Hironori Kasahara has served as a chair or member of 225 society and government committess, including a member of the CS Board of Govermors;
chair of C5 Multicore STC and CS Japan chapter; associate editor of IEEE Transactions on Computers; vice PC chair of the 1996 EMIAC S0th
Anniversary International Conference on Supercomputing; general chair of LCPC; PC member of SC, PACT, PPoPP, and ASPLOS; board member of
IEEE Tokyo section; and member of the Earth Simulator committes.

He received a PhD in 1935 from \Waseda University, Tokyo, joined its faculty in 1935, and has been a professor of computer science since 1997 and
F.\ a director of the Advanced Multicore Research Institute since 2004. He was a visiting scholar at University of California, Berkeley, and the University
of lllinois at Urbana—Champaign's Center for Supercomputing Ra&D.

Kazahara received the CS Golden Core Member Award, IFAC World Congress Young Author Prize, IPSJ Fellow and Sakai Special Regsarch Award, and the Japanese
Ministers Science and Tethnclogy Prize. He led Japanese national projects on parallelizing compilers and embedded multicores, and has presented 210 papers, 132 invited
talks, and 27 patentz. Hiz research has appeared in 520 newspaper and Web ariicles.

Group

Past IEEE Computer Society Presidents

Chairs of the IRE Professional

on Electronic Computers

1951-53
1953-54
1954-55
1955-56
1956-57
1957-58
1958-59
1959-60
1960-62
1962-64

Morton M. Astrahan
John H. Howard
Harry Larson

Jean H. Felker
Jerre D. Noe
Werner Buchholz
Willis H. Ware
Richard O. Endres
Arnold A. Cohen
Walter L. Anderson

Chairs of the AIEE Committee

on Large-Scale Computing Devices

1946-49
1949-51
1951-53
1953-55
1955-57
1957-59
1959-61
1961-63
1963-64

Charles Concordia
John Grist Brainerd
Walter H. MacWilliams
Frank J. Maginniss
Edwin L. Harder
Morris Rubinoff
Ruben A. Imm

Claude A. Kagan
Gerhard L. Hollander

Chairs & Presidents of the IEEE
Computer Society

1964-65
1965-66
1966-67
1968-69
1970-71

1974-75
1976

1977-78
1979-80
1981

1982-83
1984-85
1986-87
1988
1989
1990
1991
1992
1993
1994
1995

Keith Uncapher
Richard I. Tanaka
Samuel Levine
Charles L. Hobbs

1996
1997
1998
1999
2000

Edward J. McCluskey 5001
1972-73 Albert S. Hoagland

Stephen S. Yau
Dick B. Simmons
Merlin G. Smith
Tse-Yun Feng
Richard E. Merwin
Oscar N. Garcia
Martha Sloan

Roy L. Russo

Edward A. Parrish
Kenneth A. Anderson
Helen M. Wood
Duncan H. Lawrie
Bruce D. Shriver
James H. Aylor
Laurel V. Kaleda
Ronald G. Hoelzeman

2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016

Mario R. Barbacci
Barry W. Johnson
Doris L. Carver
Leonard L. Tripp
Guylaine M. Pollock
Benjamin W. Wah
Willis K. King
Stephen Diamond
Carl K. Chang
Gerald L. Engel
Deborah M. Cooper
Michael R. Williams
Rangachar Kasturi
Susan K. (Kathy) Land,
James D. Isaak
Sorel Reisman

John W. Walz

David Alan Grier
Dejan S. Milojicic
Thomas M. Conte
Roger U. Fujii

2017 Jean-Luc Gaudiot
2018 Hironori Kasahara

IEEE Computer Society BoG
(Board of Governors) Feb.1, 2017

- _I.-- SEST ——
RS so 7'“"- e

e
Toward 2018

1. Refining content and services to further improve the satisfaction of
CS members;

2. Considering an incentive for volunteers to further accelerate CS
activities and promptly provide technical benefits for people
around the globe;

3. Offering more attractive services for practitioners in industry;

4. Providing the world’s best educational content and historical
treasures for future generations, which only the CS can create
with our pioneering researchers (for example, the Multicore
Compiler Video Series found at
www.computer.org/web/education/multicore-video-series);

5. Thinking about sustainable membership fees while considering the
diversity of economic situations within the 10 regions;

6. Cooperating with other IEEE societies and sister societies in a
timely and efficient manner;

7. Intelligibly introducing the latest computer-related technologies to
younger generations, including children, so that they can realize
their technological dreams.

. < IEEE
.CO ng%Iety 5 Advancr?gr ﬁ;;rz;’;gy

Multicores for Performance and Low Power

Power consumption is one of the biggest problems for performance
scaling from smartphones to cloud servers and supercomputers

(“K” more than 10MW) .

f ﬂ 55 |
v

i

5
n

IEEE ISSCCO08: Paper No. 4.5,
M.ITO, ... and H. Kasahara,
“An 8640 MIPS SoC with
Independent Power-off Control of 8
CPUs and 8 RAMs by an Automatic
Parallelizing Compiler”

Power o Frequency * Voltage?
(Voltage o< Freguency)

mm) Power o< Frequency?

If Frequency is reduced to 1/4
(Ex. 4GHz->1GHz2),

Power iIs reduced to 1/64 and

Performance falls down to 1/4 .

<Multicores>

If Scores are integrated on a chip,

Power is still 1/8 and

Performance becomes 2 times.

Sparc CC-NUMA Server

M proposed method

M original (sun studio)

Il
LA
o

211.0

2

[
L1
o

2

LA
o

Speed-up ratio against
original sequential execution
L

1lpe 32pe bdpe 12E8pe
With 128 cores, OSCAR compiler gave us 100 times

speedup against 1 core execution and 211 times speedup
against 1 core using Sun (Oracle) Studio compiler.

OSCAR Parallelizing Compiler

To improve effective performance, cost-performance

and software productivity and reduce power

Multigrain Parallelization

coarse-grain parallelism among loops
and subroutines, near fine grain
parallelism among statements in
addition to loop parallelism

Data Localization

Automatic data management for
distributed shared memory, cache
and local memory

Data Transfer Overlapping

Data transfer overlapping using Data
Transfer Controllers (DMAS)

Power Reduction

Reduction of consumed power by
compiler control DVFS and Power
gating with hardware supports.

88.3% Powér Reduction

T —

Generation of Coarse Grain Tasks

sMacro-tasks (MTs)
> Block of Pseudo Assignments (BPA): Basic Block (BB)
> Repetition Block (RB) : natural loop
> Subroutine Block (SB): subroutine

' — BPA + Near fine grain parallelization : :EEA

: : .

! , Loop level parallelization BPAI | LBPA
Program-—— RB < Near fine grain of loop body ’:RB : Z§E

| . Coarse _gra_ln SB +— _BPA

! . parallelization __BPA ' [-RB

I I _ ! B

, L SB 4 Coarse grain RB —— SPA

! | parallelization SB —, [RB

: : SR
Total | : I

19 st 1 nd ! rd
System ' Layer 2" Layer S baver

1 l .

Earliest Executable Condition Analysis for Coarse
Grain Tasks (Macro-tasks)

Data Dependency
""""""" Control flow
) Conditional branch

BPA Block of Psuedo
Assignment Statements ? O

RB Repetition Block
7 ---------- ’ RB
’ Glie
’ BPA:“ RB
15 BPA 7 RB | s ’
- : RB #
o, 15 i
""""" ~ Datadependency 12
""""" Extended control dependency .
O conditional branch 3
= N OR e
13 RB -~~~ AND 14
‘‘‘‘‘ 1 e A Macro Elow Graph > Original control flow
N A Macro Task
Graph

10

MTG of Su2cor-LOOPS-D0O400
Coarse grain parallelism PARA _ALD = 4.3

mm DOALL pmm Sequential LOOP —SB g BB

11

A schedule for

digl

R EEEEREEERE
1 I
O
I — -
< /T -
) — "
CO -I'qf‘vu N
IRk -
| | b
a ™ N~ —
|| N
e
g0’ 3
o)) o
S 2 G
O -
NInminEn Uiy
R
8
S
&
®
()

two processors

12

MTG after Division

MTG

Inter-loop data dependence analysis in TLG

e Define exit-RB iIn TLG

_ C RB1(Doall)
as Standard-Loop DO 11 101
 Find iterations on which Eﬁ(gsil
a Iteration of Standard-Loop is
data dependent C RB2(Doseq)
. DO I1=1,100
- e.0. K, of RB3 is data-dep B()=B{I-1 ? .
on K-1,,Ky, of RB2, +HA)+A(I+1)
ENDDO
on K-1, K, ,K+1, of RB1
C RB3(Doall)
DO 1=2,100 . L
C(I)=B(1)+B(l-1) > ’
ENDDO

13

Data-Localization: Loop Aligned Decomposition
 Decompose multiple loop (Doall and Seq) into CARs and LRs
considering inter-loop data dependence.
— Most data in LR can be passed through LM.
— LR: Localizable Region, CAR: Commonly Accessed Region

4)

~

4 N @ N [Y

LR

C RB1(Doall)

DO I=1,101
A(l)=2*
ENDDO

LR

CAR

LR

CAR

C RB2(Doseq)
DO 1=1,100
B(1)=B(I-1)
+A(1)+A(I+1)
ENDDO

RB3(Doall)
DO 1=2,100
C()=B(I)+B(I-1)
ENDDO
C

DO I=1,33

DO 1=34,35

DO 1=36,66

DO |1=67,68

DO 1=69,101

DO I=1,33

DO |1=34,34

5

DO [=2,34

4

Z\

DO [=35,66

N

N\

DO I=67,67

DO 1=68,100

— |

DO 1=35,67

DO 1=68,100

o

4

- 4

o

N\~

S

Decomposition of RBs in TLG

e Decompose GCIR into DGCIRP(1=p=n)

— n: (multiple) num of PCs, DGCIR: Decomposed GCIR
o Generate CAR on which DGCIRP&DGCIRP* are data-dep.
» Generate LR on which DGCIRP is data-dep.

An Example of Data Localization for Spec95 Swim

DO 200 J=1,N
DO 200 I=1,M
UNEW(I+1,J) = UOLD(I+1,J)+
1 TDTSS8XZ(I+1,J+1)+Z(1+1,3))*(CV(I+1,J+1)+CV(,J+1)+CV(l,J)
2 +CV(1+1,3))-TDTSDX*(H(I+1,d)-H(1,J))
VNEW(],J+1) = VOLD(I,J+1)-TDTS8*(Z(I+1,J+1)+Z(l,J+1))
1 *CU(I+1,d+1)+CU(1,J+1)+CU(1,3)+CU(I1+1,J))
-TDTSDY*(H(1,J+1)-H(1,3))
PNEW(I,J) = POLD(I,d)-TDTSDX*(CU(1+1,J)-CU(1,J))
1 -TDTSDY*(CV(I,J+1)-CV(1,d))
200 CONTINUE

N

cache size
0 1 2 3 4MB

: : : UN
VN | PN | UO | VO

DO 210 J=1,N
UNEW(1,J) = UNEW(M+1,J)
VNEW(M+1,J+1) = VNEW(1,J+1)
PNEW(M+1,J) = PNEW(1,J)

210 CONTINUE

DO 300 J=1,N
DO 300 I=1,M
UOLD(1,J) = U(1,J)+ALPHA*(UNEW(1,J)-2.*U(1,J)+UOLD(1,J))
VOLD(1,J) = V(1,3)+ALPHA*(VNEW(I,J)-2.*V(1,3)+VOLD(1,J))
POLD(1,d) = P(1,J)+ALPHA*(PNEW(I,J)-2.*P(1,J)+POLD(l,J))
300 CONTINUE

(a) An example of target loop group for data localization
16

v

POICU|CV]| Z

UN

VN | PN

U V P | UN
VN | PN | UO | VO

~ 1

Cache line conflicts occurs
among arrays which share the
same location on cache

(b) Image of alignment of arrays on
cache accessed by target loops

Data Layout for Removing Line Conflict Misses

17

by Array Dimension Padding

Declaration part of arrays in spec95 swim
before padding after padding

PARAMETER (N1=513, N2=513) PARAMETER (N1=513, N2=544)
- :

COMMON U(N1,N2), V(N1,N2), P(N1,N2), COMMON U(N1,N2), V(N1,N2), P(N1,N2),

* UNEW(N1,N2), VNEW(N1,N2), * UNEW(N1,N2), VNEW(N1,N2),

1 PNEW(N1,N2), UOLD(N1,N2), 1 PNEW(N1,N2), UOLD(N1,N2),

* VOLD(NZ1,N2), POLD(N1,N2), * VOLD(NZ1,N2), POLD(N1,N2),

2 CU(N1,N2), CV(N1,N2), 2 CU(N1,N2), CV(N1,N2),

* Z(N1,N2), H(N1,N2) * Z(N1,N2), H(N1,N2)

= > AMB

7 I padding
. .
E B B B

Box: Access range of DLGO

Automatic Parallelization of Still Image Encoding Using JPEG-XR
for the Next Generation Cameras and Drinkable Inner Camera

O LILEErobd

g

B
-
Ei|) sy

EHEHEHEHEHEH =R

Ly EIEEEEHED S EEEEEEE, ol

BEEEEIEEEEERE, o

i =HE e = e s Il [l
~ - <11
By i S

E

B

3y EEEEEE R R,

g BiqleieH e = HeH el = ez E) §

60.00

50.00

40.00

Q.
=]

. €0.00

(%)
20.00

Speed-ups on TILEPro64 Manycore

0.18[s]
55.11
30.79
137 15.82
10.0[s]
7.86
1 00 1. 96 3 95 I
1 2 32 64
7%51

55 times speedup with 64 cores
against 1 core

Waseda U. & Olympus

OSCAR Compile Flow for Simulink Applications

T

Generate C code
using Embedded Coder

/% Model step function #/
E\Eoid VesselExtract ion_steplvaid)

intd2_T i
real _T ul;

=l /% DataTypeConversion: '<51>/Data Twpe Conversion’ incorporates:
Inport: “<Root>/Inl’
#
for (1= 0; 0 < 16384; 1++) {
YesselExtract ion_B.DataTypeConversion[i] = YesselExtraction_U.In1[i];

/% End of DataTypeConversion: <81>/Data Type Conversion® #/

[

Sx Outputs for Aamic SubBystem: “<S1>720f(lter’ x/

Jx Constant: <B13/h1” %/

VesselExtract ion_Df i IteriVesselExtract ion_B.DataTypeConversion,
Vessel|Extraction_P.h1_Value, &YesselExtraction_B.Dfilter,
(P_Dfilter _MesselExtract ion_T x)d¥esselExtraction_P.Dfilter);

=l /% End of Qutputs for SubSystem: "<S10/20Filter’ #/

A+ Qutputs for Stomic SubSystem: "<§1>/2Dfilter]’ +/

/% Constant: "<813/h2" =/

VesselExtract ion_Dfi IteriVesselExtract ion_B.DataTypeConversion,

Vessel|Extraction P.h2 _Value, &WesselExtraction_B.Dfilterl,
(P_Dfilter_WesselExtract ion_T #)&esselExtraction_P.Dfilter!};

C code

(1)

‘Y’:\"
4\
\

- Parallelism

PC2

PC3

(2) Generate gantt chart ce=w

MT10 | MT12 | E |

MT6 ‘ MT11

MT7

|
| MTS5 ‘
|
|

|
4.0E-02
TIME [s]

= Scheduling in a multicore

OSCAR COmpiler Eﬁinld WesselExtract ton_step I)

B (3) Generate parallelized

~

=void thread_function_001 (void)

int thrl ;
int thr2 ;
int thrd ;

Yessel|Extraction_step PE1 () ;

_—

i
{
oscar_thréad create { & thrl ,

thread function 001 . (vaid#)l) ;
oscar_thread create (& thr? ,

thread_function_002 . (void#)2 1 ;
oscar_thread create { & thrd ,

thread_function_003 . (void#)3 1 ;

VesselExtraction step PED ()

oscar_thread join (thri
oscar_thread join thr2
oscar_thread _join (thr3

)
)

:I !

C code
sing the OSCAR API

- Multiplatform execution

(Intel, ARM and SH etc)

19

Speedups of MATLAB/Simulink Image Processing on
Various 4core Multicores
(Intel Xeon, ARM Cortex A15 and Renesas SH4A)

3.56 343
3.50 320 312
2.92
2.50 2.29 2.25 2.33 & 15248
2.0 2.06 o4
- 1.97 1.85 20
1.50
1.00
0.50
0.00
Road Tracking Buoy Image Color Edge Optical Flow Vessel
Detection Compression Detection Detection

M Intel Xeon E3-1240v3 m ARM Cortex A15 m Renesas SH-4a

Road Tracking, Image Compression : http://www.mathworks.co.jp/jp/help/vision/examples
Buoy Detection : http://www.mathworks.co.jp/matlabcentral/fileexchange/44706-buoy-detection-using-simulink
Color Edge Detection : http://www.mathworks.co.jp/matlabcentral/fileexchange/28114-fast-edges-of-a-color-image--actual-color--not-converting-

to-grayscale-/

Vessel Detection : http://www.mathworks.co.jp/matlabcentral/fileexchange/24990-retinal-blood-vessel-extraction/

20

Parallel Processing of Face Detection
on Manycore, Highend and PC Server

H tilepro64 gcc

| mSR16k(Power7 8core*4cpu*4node) xlc

1 rs440(Intel Xeon 8core*4cpu) icc

6.46 6.46
5.74

1721.931.93

1.001.001.00

- 8

0 OSCAR compiler gives us 11.55 times speedup for 16
cores against 1 core on SR16000 Power?/ highend server.

6

Automatic Parallelization of Face Detection

Data Localization: Loop Aligned Decomposition

 Decomposed loop into LRs and CARs
— LR (Localizable Region): Data can be passed through LDM

— CAR (Commonly Accessed Region): Data transfers are

required among processors o _ N
Multi-dimension Decomposition

Single dimension Decomposition /
o | o6l | o /g// : §

(\ () Y 4
DO I=1.101 LR CAR LR CAR | LR /

B(1)=B(-1) DO1=34 34 .

00 1=67,67
| . : A A /

00|:|2l18u|3).8|1 / \ / | DO =68, 100 | 2 } 4 //

il v et o e VA) g

0 2 3 5 6 B 9

Allj=21 00113 || DOIM35 [I| DOI=3666 || DOI6T8 ||| DOI=69,101

ENDDO b — D ; ﬂ_ ; 7
DOI=1,33 .

tA(PFA(1) ‘

ENDDO - D0k2Y DOI=35,67 il DOI=68,100

DO 121,100 5 ;
| § 8/ \ /
ENDDO | 5s/ /LS / // /
\ | y\),

22

Adjustable Blocks

0 Handling a suitable block size for each
application
m different from a fixed block size in cache
m each block can be divided into smaller blocks

with intege Blocky.ee ™ SMaAll @arrays
and Scalar ' «—— 1 Block on Local Memory ——|

Level 0 Block,”

Level 1 | Block,' Block;'

Level 2 |Block,’[Block:*(Block,%Blocks’

Level 3 [87|87|8’|B:'|B:’|Bs’| B¢’ |B;

Multi-dimensional Template Arrays
for Improving Readability

TEMPLATE ARRAY ~ TEMPLATE ARRAY ~ TEMPLATE ARRAY
* a mapplng teChanue for arrays Wlth FOR 1-DIMENSIONAL ~ FOR 2-DIMENSIONAL FOR 3-DIMENSIONAL
varying dimensions ARRAY ARRAY ARRAY
— each block on LDM corresponds to ~ A
multiple empty arrays with varying // = =§ﬁf
dimensions I
.. |
— these arrays have an additional

dimension to store the corresponding RS
block number BOR2
« TA[Block#][] for single dimension
» TAJ[Block#][][] for double dimension
o TA[Block#][][][] for triple dimension

R

i

 LDM are represented as a one Bodk?
dimensional array
— without Template Arrays, multi- LDM
dimensional arrays have complex index
calculations

o A[][jI[K] -> TA[offset + i’ * L +j’ * M + K’]
— Template Arrays provide readability , ,
o A[il[1IK] -> TA[Block#][i'1[i’1[K’] 24

Block Replacement Policy

0 Compiler Control Memory block
Replacement
= using live, dead and reuse information of each

variable from the scheduled result

m different from LRU in cache that does not use

data dependence information

0 Block Eviction Priority Policy

1.

2.

3.

(Dead) Variables that will not be accessed later
in the program

Variables that are accessed only by other
processor cores

Variables that will be later accessed by the
current processor core

Variables that will immediately be accessed by
the current processor core

Code Compaction by Strip Mining

O Previous approach produces

for (i=0;i<16;i++)

duplicate code | | o0 i<6h 0
® generates multiple copies of the aip] =1+
loop body which leads to code
bloat for (i=0;i< 15;i+4)
for (j =0;j i
0 Proposed method adopts code il ol 141
compaction il

m based on strip mining

= multi-dimensional loop can be for (=01 < 15 11+=8)
for (jj = 0; jj < 63; jj+=32)
reStrUCtU red for (i = ii; i < min(15,ii+8+1); i++)

Code for (j =]], j < mip(63,jj+32+1); j++)

Duplication v Ve v bl =1+
4

v oy for (i = ii: 1 < min(15,i48); 1++)

= v for (j = jj; j < min(63j+32); j++)

Strip Mining b[i] j] = ali][j] +a[i+1][j+1];

8 Core RP2 Chip Block Diagram

Cluster #0 Barrier Cluster #1
Core #3 Sync|. LLines Core #]
Core #2 Core #6|
Core #1 o\ Core #5
Core #0 Core #4
CCPGO CPU FPU ‘ o - FPU CPU LCPGT
PCRJ 4T T 4+—b PCR7]
PCRY]!gK 1%& ES\N le > g g —t>1 %(E\\IFL 1%$K fll.%K PCRY
Local memor — S S Local memor
PCRI 1:8K, D:32Ky o o 1:8K, D:32 PCRY
——— - o o o ———
URAM 64K i 2 2 _ URAM 64K ||| PCRZ
p) p)
i I TITt 1 111 T TIft
On-chip system bus (SuperHyway)
v v v LCPG: Local clock pulse generator
DDR2|| SRAM | DMA | PCR: Power Control Register
control| [control||control] ccN/BAR:Cache controller/Barrier Register

URAM: User RAM (Distributed Shared Memory)

Speedups by the Proposed Local Memory Management
Compared with Utilizing Shared Memory on
Benchmarks Application using RP2

25.00
= 20.12
20.00 r
15.00 ik i
12.61
11.30;
10.00 —
7.38 740 |
573 5078 5.50
, 3.76
5.00 3.13 ou e 15
206 | o 19 :
10 ' 10 13
0.00 -
Sample Sample AACenc AACenc Mpeg2enc Mpeg2enc tomcatvy tomcatv swim swim (Local
Program Program (Shared (Local (Shared (Local (Shared (Local (Shared Memory)
(Shared (Local Memory) Memory) Memory) Memory) Memory) Memory) Memory)
Memory) Memory) M1PE M2PE M4PE W8PE

20.12 times speedup for 8cores execution using local memory against
sequential execution using off-chip shared memory of RP2 for the AACenc

Conclusions

> This talk introduced automatic cache and local memory
management method using data localization with hierarchical loop
aligned decomposition, adjustable block tailored for each
application, and block replace considering block reuse distance .

» The local memory management method was implemented on the
OSCAR parallelization compiler.

> The performance on the RP2 8 core multicore gave us
» for example,

» 20.12 times speedup on 8cores using local memory against
sequential execution using off-chip shared memory for the
AAC encoder though the 8 core execution using shared
memory gave us 7.14 times speedup.

» 11.30 times speedup on 8cores execution using local memory
against sequential execution using off-chip shared memory for
the SPEC95 swim though the 8 core execution using shared
memory gave us 7.40 times speedup.

