

An Autonomous Decentralized Mechanism for Energy Interchanges with Accelerated Diffusion Based on MCMC

Ittetsu TANIGUCHI Osaka University, Japan E-mail: i-tanigu@ist.osaka-u.ac.jp

Acknowledgement

• Prof. Yusuke Sakumoto

– Tokyo Metropolitan University, Japan

Introduction

- Background
 - Research on decentralized energy network
 - Houses with PV panel and battery
 - Local energy network for energy interchange
 - Effective utilization of renewable energy
 - Energy interchange mechanism to fill in the spatial and temporal gaps
- This work
 - Design of autonomous decentralized mechanism for energy interchange
 - Diffusion equation
 - MCMC (Markov Chain Monte Carlo)

SAKA UNIVERSITY

System Model

- Battery network G = (V, E)
 - -V: set of nodes with battery, E: set of edges
- Battery sufficiency level $\hat{q}_i(t) := q_i(t) \theta_i$
 - $q_i(t)$: remaining amount, θ_i : target level

Goal: equalize the battery sufficiency level $\hat{q}_i(t)$ Approach: diffusion equation and MCMC

Source of the second se

• Discrete diffusion equation

$$\hat{q}_i(t + \Delta t) - \hat{q}_i(t) = k' \Delta t \sum_{\forall j \in a_i} \left(\hat{q}_j(t) - \hat{q}_i(t) \right)$$

- k': diffusion coefficient, a_i : set of node i's adjacent nodes
- Energy transmission amount from node *i* to each adjacent node *j* $\forall j \in a_i \quad J_{i \rightarrow j}(t) = k' \Delta t \cdot \hat{q}_i(t)$
 - Only depends on sufficiency level of node i
 - Actual flow is calculated by sum of energy transmission $J_{i \rightarrow j}(t)$
 - Long time for equalization
- Energy transmission can be regarded as the diffusion of the energy particles
 - Movement of each energy particle is modeled by Markov chain
 - Opportunity to apply MCMC for fast equalization

 $J_{y \to c}(t)$

 $J_{x \to a}(t)$

 $J_{x \to h}(t)$

а

b

 $J_{x \to v}(t)$

 $J_{y \to x}(t)$

 $J_{x \to y}(t) = J_{x \to a}(t) = J_{x \to b}(t)$ $J_{y \to x}(t) = J_{y \to c}(t) = J_{y \to d}(t)$

OSAKA UNIVERSITY Acceleration of the Equalizing based on MCMC

- MCMC (Markov Chain Monte Carlo) •
 - Method to design the Markov chain with probability distribution of the metric
- Proposed metric

$$E(\hat{Q}(t)) = \frac{1}{|V|} \sum_{i=1}^{|V|} \hat{q}_i(t)$$

Realize fast equalizing

Calculation of $J_{i \rightarrow i}(t)$ is updated based on MCMC → Fast equalization is realized!

Simulation Result: Sufficiency Level Equalization

- Time evolution of battery remaining amount $q_i(t)$
 - Target level θ_i for all nodes: 50
 - Average of $q_i(0) = 5$ in the center region
 - Average of $q_i(0) = 50$ in the other region

Simulation Result: Demand-aware Sufficiency Level Equalization

- Time evolution of battery remaining amount
 - Target level θ_i of a few nodes: 75
 - Target level θ_i of the others: 50

Simulation Result: Convergence Property in the Equalizing

- Time evolution of statistics of energy remaining amount $q_i(t)$
 - Target level θ_i for all nodes: 50
 - Average of $q_i(0) = 50$

Conclusion and Future Work

- Conclusion
 - Autonomous decentralized mechanism of the energy interchanges
 - Derived the expression of energy interchange from the diffusion equation
 - Improved the derived expression by using MCMC for fast equalizing
 - Clarified the fundamental property of the proposed mechanism on ideal scenario
- Future work
 - Evaluation on more practical scenario