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Memory Wall is a Major Issue

▪Computation and memory are physically 
separated and distributed
▪ At node, rack, and system levels

▪Mismatch of computation, memory, 
communication, and support subsystems
▪ More/faster processors require more and/or faster memory 
accesses

▪ Distributed subsystems require efficient synchronization 
schemes

▪Worsen by the ending of Moore’s Law
▪ Cores and caches compete for limited chip area and TDP
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Silicon Photonics is a Potential Solution

▪ Benefit from silicon-based technologies and 
fabs
▪ Micron-scale nanosecond-level devices are widely 
demonstrated

▪ Active commercialization
▪ IBM, Intel (Omni-Path), HPE (Machine), Oracle (UNIC), Cisco, 
Finisar, Mellanox, ST, NTT, NEC, Fujitsu (PECST), Huawei 
(DC3.0), ZTE …

▪ Startups: Luxtera-ST, Lightwire/Cisco, Kotura/Mellanox, 
Caliopa/Huawei, Aurrion/Juniper, Rockley, Acacia, OneChip, 
Skorpios, Ayar, Sicoya, Elenion…

▪ PEDA (photonic-electronic design automation): Cadence-
PhoeniX-Lumerical, Mentor Graphics-Lumerical-Luceda, 
RSoft/Synopsys …

▪ ST, GF, TSMC, TowerJazz …

Integrated OE 

Interfaces & Processor

C. Sun et al., “Single-chip 

microprocessor that communicates 

directly using light”, Nature 2015

Integrated OE 

Interfaces

D.M. Gill, et al., “Demonstration 

of Error Free Operation Up To 32 

Gb/s From a CMOS Integrated 

Monolithic Nano-Photonic 

Transmitter”, CLEO 2015 

Integrated Optical 

Switches

R. Ji, et al. “Five-Port Optical Router 

Based on Microring Switches for 

Photonic Networks-on-Chip”, IEEE 

Photonics Technology Letters 2013
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Photonics is Different from Electronics

▪Advantages
▪ Ultra-high bandwidth

▪ Low propagation delay

▪ Low propagation loss

▪ Low sensitivity to environmental EMI

▪Disadvantages
▪ Electrical/optical conversion

▪ Thermal sensitivity

▪ Crosstalk noise

▪ Process variation

▪ Difficult to “buffer”

Differences bring opportunities and challenges

Solkan Bridge, Slovenia 1906
Stone 85/220m

Cold Spring Bridge, USA 1963
Steel 210/371m

Tsing Ma Bridge, Hong Kong 1997
Steel 1377/2160m
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Outline

▪ Introduction

▪OMIN: optical memory interconnection network

▪MOCA overview

▪ Evaluation and analysis

▪Conclusions
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Optical Memory Interconnection Network (OMIN)

▪OMIN connects cache, local memory, and remote 
memory
▪ Based on unified inter/intra-chip and inter-node optical network 

▪ Inter- and intra-chip electrical interconnects are 
separately designed
▪ Limited and expensive chip pins create a sharp chip boundary

▪ Different on-chip and off-chip constraints

▪ Maximize design flexibility and allow third-party system 
integration

▪ Co-design inter/intra-chip and inter-node network 
to take the full advantages of optical 
interconnects
▪ Avoid buffering and reduce OE/EO conversions

▪ Optical chip pins offer 100X~1000X higher bandwidth than 
electrical chip pins*

* Z. Wang, et al., “Alleviate Chip I/O Pin Constraints for Multicore 

Processors through Optical Interconnects”, ASP-DAC 2015.
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MOCA: Memory Optical Communication Architecture

* Z. Wang, Z. Pang, P. Yang, J. Xu, et al., “MOCA: an Inter/Intra-Chip Optical Network for Memory,” DAC 2017
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Intra-Chip Optical Network

▪ Segmented bidirectional optical ring

▪ Multiple simultaneous transactions on one 
data channel
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Physically-Centralized Logically-Distributed Control

▪Cluster agents are in the chip center
▪ Optically or electrically connected with clusters

▪ Electrically connected among each other

▪Distributed control algorithm
▪ Computational complexity is O(1)

▪ 0.0035mm2 and 43µW/GHz at 16nm
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Laser Source and Clock

▪Off-chip laser source
▪ Shared by processors and memories

▪ On-board centralized

▪ Replaceable

▪ Improve thermal control

▪ Better energy efficiency

▪Optical clock distribution
▪ Synchronize processors and memories

▪ Optical fibers distribute reference clock

▪ Low power

▪ Low skew
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Optical Weaving OE Interface

▪ Based on a novel optical-electrical SerDes

▪High energy efficiency

▪ Low latency
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Traditional Electrical Funneling OE Interface

Electrical SerDes + OE conversion
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Optical-Electrical SerDes

▪High-speed photonic circuit with low-speed electronic circuit
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Simulation Environment and Setup

▪ Simulation environment: JADE [15]

▪ Benchmarks
▪ COSMIC [25]

▪ STREAM [16]

▪Component parameters
▪ JADE [15]

▪ OEIL [20]

▪ Micron memory power model [19]

Parameter Value

Core 32~256 ARM-v7 cores @3GHz

I/D $ 32KB/core, private

L2 $ 128~512KB/core, shared

Cache line size 64B

Cache coherence directory-based MOSI

NoC topology ring

Technology
7nm electronic die
65nm photonic die

Processor
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Simulation Environment and Setup

Memory Optical devices

Parameter Value

Waveguide propagation loss 1 dB/cm

Waveguide crossing loss 0.1 dB

Fiber propagation loss 5x10-6dB/cm

32-way splitter excess loss 4 dB

Optical pin coupling loss 2 dB

Receiver sensitivity -20 dBm

Laser power conversion efficiency 10 dB

Laser power extinction ratio 10

Microresonator passing loss 0.2 dB

Microresonator insertion loss 1 dB

Microresonator heat tuning power 0.05 mW

Parameter Value

Organization

2 bank/rank
x8 rank/transaction engine
x32 transaction engine/chip
x32 chip/front-end engine
x32 front-end engine

Frequency 800MHz

Memory Size 8GB/chip

Schedule Policy FR-FCFS

Page Policy close-page policy

Technology
14nm logic die
22nm memory die
65nm photonic die
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Delivered Memory Bandwidth and Performance

▪MOCA delivers 162% higher 
memory bandwidth 
compared to HMC for 256-
core processors

▪MOCA speedups 2.6X 
compared to HMC for 256-
core processors

▪Under STREAM benchmark 
[16]
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Latency

▪MOCA reduces latency by 
75% compared to HMC for 
256-core processors

▪Narrowly distributed

▪Under STREAM benchmark 
[16]
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Energy Efficiency

▪MOCA helps to save 71% energy 
compared to HMC in 256-core 
processors

▪ ENoC-based MOCA can save 
37% energy

▪ Better scalability in term of 
energy efficiency
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Execution Time under Different LLC Sizes

▪ 256-core, 128~32MB shared LLC

▪MOCA offers 59% higher performance than HMC

▪MOCA can support memory-intensive applications with smaller LLC
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Conclusions

▪MOCA is an example of OMIN
▪ Unified inter/intra-chip optical network

▪ Physically-centralized logically-distributed control

▪ Off-chip central laser source

▪ Optically distributed clock

▪ Optical weaving OE interface

▪Help to reduce on-chip cache sizes

▪ Significantly improve performance and energy efficiency
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Publically Released Tools

▪ Bibliography for inter/intra-chip optical networks

▪ JADE heterogeneous multiprocessor simulation environment

▪COSMIC heterogeneous multiprocessor benchmark suite

▪CLAP optical crosstalk and loss analysis platform

▪OTemp optical thermal effect modeling platform

▪OEIL optical and electrical interface and link analysis environment

▪MCSL realistic network-on-chip traffic patterns

▪ PowerSoC power delivery system analysis platform

www.ece.ust.hk/~eexu
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Forums and Journal Special Issue

▪OPTICS Workshop
▪ Optical/PhoTonic Interconnects for Computing Systems

▪ Annually since 2015, base in Europe

www.ece.ust.hk/~eexu/OPTICS

▪ PHOTONICS Workshop
▪ PHotonics-Optics Technology Oriented Networking, Information and Computing Systems

▪ Annually since 2017, base in US

www.ece.ust.hk/~eexu/PHOTONICS

▪ACM Journal of Emerging Technologies in Computing Systems
▪ Special issue on silicon photonics

http://jetc.acm.org/announcements.cfm
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